DOCURENT RESUME

TITLE
INSTITUTYON
SFONS AGENCY
BUREAJ NO
PUR DATE CONTRACT NOTE

EDRS PRICE DESCRIPTORS

Self-Faced Physics, Course Materials. Naval Academy, Annapolis, Na.; New York Iniz. of Tech. old testbury. Office of gducation (Dasta) , Washington. D.C. Rureal of Research.
BR-8-0446
[73]
N00600-68-C-0749 236 P .

MF-\$0.65 HC-\$9.87
College science; * Course Lescriptions; *Course Organization; curriculum pevelopment; educational Frograms; *Independent Study; *hysics; problem Solving: Science thucation; Self Help Programs

IDENTIFIERS

Abstract

AESTRACF Samples of the self-paced Physics Course materials are presented in this collection for dissemination purposes. Descriptions are included of course objectives, characteristics. structures, and content. As a two-semester course of study for science and engineering sophomores, most topics are on a level comparable to that of classical physics by falliday and Resnick. passages of four college-level phyaics textbooks are used as reading assignments. In the material development, emphases axe placed on instructional objectives represented by core protems, an exposition through enabling and competence check problems, an iterative process of successive tryouts; and a self-instruction theory with minimum tutorial support. contained in the whole set are 18 problems and solutions books, 72 study guides, 25 videotapes, 25 talking books, 25 illustrated texts, 12 quarterly diagnostic tests, remedial problem setz, one student manual, two inatructor"s manuals for course and laboxatory, three laboratory manuals, and one enrichment volume, The course has been weed for three years at the U. S. Naval Academy tifough an extensive txial-and-revision process. Related documents are SE 016.066-SE 016088 and ED 062123 - ED 062 125. (CC)

VAILABLE COPY

 *

SELF-PACED PHYSICS COURSE MATERIALS

Self-Paced PHYSICS

CONTHPTM

ORERVIEW
STUDENT MARUAL
TASTRUCMOR MANUAL
PROBLLKE ARD SOLUTIONS BOOK
GTIDY GUIDES
TLLUSTMRATED TEXT
TALKING BOOR (WITH CASSEMTE)
DLAGMASTIC TEST
COMFETENCE CRECK PROBZENS
FOREWORD AND MWO SANPTE CKAFTERS

Self-Paced pHYsICS

* * NEW YORK INSTITUTE of TECHNOLOGY

OVERVIEW

SELF-RACED PHYSICS COURSE

The Self-Paced Physios Courge is a two-semester course in calelusoriented, college-level physics, developed by the New York institute af Technology for the U.S. Naval Academy with funds provideis by the U.S. Office of Bducation. Outstanding Leatures of the coursc in: clude the ingginative use of a variety of media and materiais and the extensive ase of branching and selfopaciag to individualize instruction.

COURSE DESCRIFYYON
The Salf-Raced physice couse is designed to teach introductory college physies to sophomore students of science and ensineerins. Among the topics covered in the course are mechamics, wave phenomena, electricity, magnetism, and optics-min short, most of the topics that would be found in any introductary course in elassical physics.

Each student's peth turough the physies course is determined by his achievement of a set of measurable behavioral abjectives (MBO's) that have been designed por the course. There are over a thousand MBO's in two categories: TO's or temaingl objectives, which desoribe the desires final student behavior, ma EO's, or enabling objectives, which are steps toward the terminal behaviox desired. Erenching for remediation or acceleration is built into the course, so that the instruction received by any student fits his needs as precisely as possible. Further individualization is provided by the self-pacing characteristic of the course. Each gtuadent can move timough the material at his own pace, going on to the next topic when he is reaby. Often he can choose the medium in which he wants to study. For example, the same topic may be covered by a videotape, an illustrated text, and a "talking book" (which consists of B tape cassette and a bookiet containing the diagrams referred to In the tape). The student can use the mode of instruction that is mast comfortable or most successful for hin.

FORMAT
The Self-Faced Physiss Course is divided into seventy-two Segments. for esch Segaent there is a reading assignment in one of the standard

Oyerview

textbooks；additional readings are assigned as options．All the practice and exercise materials are contained in a series of Problems and Solutions books，with three or more Segments to a book．Each Segment contains Information Panels，giving detailed information sbout the problems the student will encounter in that Segment．For each Sagent there is a study Guide which contains the branching steps that determine the stadent＇s path through the course material and gives detailed instructions on how to progress through the Segment．In addition，the student is frequentiy di－ rected by the Study Guide to work with audiovisuals such as videom tepes，talking books，on illustrated texts．Remedial problems are provided to supplement the seventy－two Eegrents of the standard course．

Two kinds of informal diagnostie tests are used in the course．One is called a Progress Check，and is administered after a specific number of jegments．Progress Checks are used for diagnosis，evalur ation，and tutorial assistence．The other informal test is cailed a Periodic Dlagnostic．This test form is used to diagnose possible weak aress in the student＇s work and to prescribe remedial work is necessary．

Formal miderm and final examinations are used to measure mastery of the course material and to determine the stuant＇s grade．

MATERIALS

The Setfmpaced Physics Course utilizes a veriety of instructional materigis，including illustrated texts，standard textbooks，taiking books，Study Guides，and Kanuals．The Study Guides are prepared to permit the use of latent－image pens．The Latent－image pen is a device designed to provide inmediate feedback to students studying independently．To wark its answer，the student rubs the pen over the response box he hes chosen．If his answer is right，a check mark（ $ل$ ）appears in the box．If it is wrong，an＂X＂appears． Branching instructions are also revealed by the latent－image pen， in accordance with the student＇s progress．The provision of inmediate feedback without the intervention of the instructor
greatly increases the potential for individuminting instruction. A ligt of the materials used in the course is presented below.

18 Frobtems and solutions books, conteining
 Segments 1-72 of the course
 72 Study Guides (Iatent-inage printed) for
 Segments 1-72

25 videotapes
25 talking books. consistine of 25 tape cassettes and 25 booklets of diagrams

25 illustrated texts
12 quarterly diagnostic tests
remedial problens
Stuadent Manual
Instmactor's Manuals (2) for Course and Lab
3 Laboratory Manuals. containing Lab sessions 1-15

A volume of Problams and Solutions designt for antichment of the standard course is also available.

The Self-Paced Physias couree har been used for three years at the V.S. Naval Academy, and has gome through an axtensive trial-andrevision process.

[^0]

Self-Paced Physics

DEVELOPED AND PRODUCED UNDEE THE U.S. office of edication, bureal of research, PRONECT FB-0446, YOR TEE U.S. NAVAL ACADEMX AT AMAAPOLIS. CONTRACT \#NOO600-68C-0749.
new yorx institute or techiolocy, old westbury,

STUOENT MAVGAL

1. DESCRIPTION OF THE COURSE

The self-paced physics course differs from conventionsi courses in a number of ways. It is largely skudent-manged programed instruction. Most of your learning will be derived from reading carefully selected passages in excellent taxtbooks, simplified written discussions of the highlights of the various subject areas, and the use of audiovisuat aids in the form of video tapes, "talking books", and brief, meaty iliustrated paraphlets called Illustrated Texts, An instructor wili be ayailable for tutorial assistance as well as diagitosis of your ptogress.

The format of the course permits you to monitor your performance and achievement by means of instant feedback from the visual response mechanism to be described -later.

In addition to self-paced theoretical instruction, you will also spend an adequate amount of cime in the physics laboratory and attend a demonstration-lecture perfodically.

You will always know in advance when a check quiz or an evaluation test is to be given. As a matter of Fact, you will determine for yourself when progeess checks will be administered to you. In addition to otber periodic tests, a standard midterm and final examination will be used to evaluate your achievenemt.

2. CODRSE STRLCTURE

Acatgred radding - From standard texcbooks, coded as follows:
HR means Halliday and Resnick, PHYSICS FOR STUDEATS OF SCEENCE AKD ENGINEERING, fifth edition, COmbined form;

SZ means Sears and Zeraanaky, UNIVERSITY PHYSICS, this d edition, complete;

AB taens Albert Baez, THE NET COLLEGE PHYSICS - A SFIRAL APPROACH, firsk printing;

St reans Shortley and Williank, ELEMRNS OF REXSICS, fourth edfition.

The required or prime reading assigument for each Sagment of the course will be idenitified by one or nore asterisks betore the chapter numbers. The remaining reading ls to be considered supplementary, A typical reading assignment and its interpretation will be presented as a sample later in this Mantal.

For maximum effectiveness, all assigned reading should be completed before you begin work on the programed inatruction. This first reading aeed not be exhaustive bucause it is antisipated that you will return to certain sections of it tiade and time again as you work tirough the Seguent.

Infoxmation fanets - A. .te from your textbook reading, much of your factual and procedural infotwation will come from Moformation Panels presented in the FROBLESS ANO SOLHTIOWS booklet for each Segrent. These panels are conctas discussions relatimg to the priaciples and mathods af solution involved in the accompanying problems. If you should find that you do not fully understand the material in the gatuel for a given section of your work, you would be expected to return to the textbook assignment for clarification.

Audiovisuats ~ These are important adjuncts to your readiag and problem solving. then you are difected to work with a specified audiovisual. you will usually be given the option of selecting one of three media of presantation.

Video tape: a demantration accompanfed by discussion that you view on the screen of a small video tape playback;

Talking Book: a set of carefuliy constructed pictures and diagrams accompanied by an audio tape lectura;

Illustrated Fext: a set of pictures similar to those used for the Talking Book acconpanied by a formal wriften discussion matched page by page to the filustrations.

Prognesa Checke - groups of relevant queations which you must answer after complecing a spectified number of Segments, usuaily three in a sequence. These checks will be used for diagaosis, prugress evaluation, and tutarial assistance should the Iatter be needed.

Periodic Diagmogtics - special test form administered periodically to assist your instructor in diagnosing possible weak areas in your learning pattern, and to enamle bizn to grescribe remedial work where requited. The Periodic Diagnostics wisl also be used to evaluate your achievemant.

Hidterm and Finat Excominations - standard examinations wieh provide fuformation relative to your final grade.

Enmiohnent Faekages - for those students whose progress warrants additional, higher level material; to be a student option.

3. frinteb henrima materials

PRORLEMS ANB SOLUTIONS. (Hereafter refecred to as the PGS.) This is bound study waterial containing the work for three or more segments in a voluat. The entire courst consists of 45 Segments for the semester. The PaS material in a given volume will concain biue titla shaets between Segrents to help you find the one you want quickly. Each pss contains:
(a) A problem zection in which the questions and fuatier feal probInas are presented in strict nomerical order, to be warked on in sequenca.
(b) A solution section in which the corrs taeriods of answering questions and solving problems ate presented in sctambled otder. Many of these solutions are rertainated by additional "ttue falas" questions so de answeted immediately after you study the individual solutions.
(c) Information Fanels strategically interspersed throughout the problem section.

STUDY GUiDe. This is just what its name implies: a written guide that you must fallow step by step, sirictly in the order presented, to work your way thtough the probleas, information panels, audioviguals. reading, solutions, and other check points, The remainder of chis Manual will be devoted to on explanation of the way 10 which alif these aspects of your learning are related,

4. HON TO USE THE STUDY GUIDE

Please refer to the sample study guide which is the last page of this booklet. It is a partial mock-up of a Segment that doesn't really exist, and will be used for explanacion purposes only. If you are to understand how the system works, if you are to avold bluters when you scart work on your first actual Segmert, you must walk through the following explanation without missing a stap. Take y"ur time; be absolucely certain you understand each maneuyer perfecriy. If you need help in inferpretation, ask for is.

Before you begin work on any Segment, ascertain that you have the cartect STUDY GUIDE by checking the numbet near the upper right-band corner, then complete the heading on each STHDY GUIDE shoet.

Another preliminary step: look at the totson of the STUDY GIIDE sheet and wote the number of pages you should have in your hand. Few sruby cuines contain more than two pages. Be sure you have what you need before you start work.

The letter P above the left column means "Problem Number': the STEES are also numbered to indicate the sequence of things you must do other than problear solving.

All right. Let's go through the sample.
Steg 0.1 The reading assignment for the Segment. The requited reading is in Halliday and Reanick, paragraphs 49~3 through $49-6$ and paragraph 49-9. The slash-bar (f) always means from one paragraph through the other, inclustive. The supplementary reading is in Sears and Zemansky, paragraphs 45-6, 45-7, and 45-11. This reading should be gone through at least once before continum ing.

Step 0.2 When you have Einished your reading, curn to the first page in the F\&S for this Segment. Read the frformation Panel, be sure you understand it fully, then continue.

This is the Eirst problem in the P\&S. Note the overscore and underscore lines. These indicate that the problem is a core type, required of all students in the course. You will find this problem boxed for the same reason in the P\&S. The problem you find in the P\&S as number i is:

How many gallons of regular gasoline could you have purchased with 5 lartian zilches in Septinnus, ohio in the year 1960 and still have some change left over?
A. 1
B. 2
C. 3
D. 4

Now obviously, to solve this problem you would have to know the price of gasoline per galion in U.S. currency and also the equivalent buying power of a Martian zilch. Presuanbly, your reading and the Information Panel contains this information bat let us suppose that you didn't do any of the reading and sa dida't know the answer. So-myou're about to make a wild guess, let's say, answer A. At this point you rub the "reveal" erayon provided all ovet the inside of box A for the first question. As you do so, you will see at X appear, showing that the selection was incorrect. Jo It now: reveal the X in box A with your erayon. (Best results are obtained by rabbing the crayon lightly over the surface, then wading a few moments for the revealed information to darken.)

Making another stab at it, you choose answer B and use the crayon, bringing out another X. Trying C, you find that the crayon reveals the charactera 29[a]. This tells you to turn to prge 29, item [a] in the Pos where you will find the full explanation of the method used to solve the problem. For this core question, yout will also find a very short true-false queation finmedately after the correct solution. This question reads as follows:

A Martian zilch is the equivalent of three l.S. nickels. True or False?

You must now use the feveal crayon on either the 3 -box or the F-box for queation 1 .

If you thake the correct truemfalse selection, a $/$ will appear in the box. If you choose incorrectly, an X wilt appear in the box. The true-falae questions are wavally so simple that you will be permitted few, if any, errors an this part of the work. Getting one of these Tmps wrons is a pretty sure indication that you are not reading the solutions. You must avold this.

Let's go down to the next step.
Step 1.1 You are now being given an option. If your first ahoice was correct, you will be permitted to skip over the next four questions and advance to the next Information Panel. lf you answered incorrectly, even once, you must go through the remedial loop consisting of questions 2 through 5 .

We are assuning that you missed question $\overline{\underline{1}}$, so let's go through this loop together.

2
Problen 2 in the PsS. It is not scored, hence it is not core problem. It reads as follows:

It is predicted that a gallon of regular gasoline will sell fot $\$ 1.05$ by the year 1998. If this is roughly $3-1 / 2$ times the price of gasoline in 1960, how tuch did one gallon cost in 1960 ?

This is not multiple-choice. It's a completion type of question where you must write in the answer. So, write your answer of the line below the rectangle for question 2. The answer is, of course, 30 f because $\$ 1.05$ is $3-1 / 2$
thags 30c. After writing it in, reveal the answer in the recsangle with the crayon; the answer 30c will appear accompanied uy the referral page and item, $14[\mathrm{c}]$, Turning to the referrai, you find the solution worked out for you to check your own thinking. Problems that are not core types are not accompanied by true-false chect questions, so y un're ready to go to question 3.

Let's interrupt the sequence for a moment. Even if you were able to answer the original core question correctly the first time, fore should go though the vomediat toop arizuras if you have any doubt at all about the method of sotution or the arawer. You may have guessed at the right answer, or you may have nade two errors that canceled cit. In any case, if you feel that your chofce of the right answer was a fluke in any way, we urge you to go through the remedial loop.

Problean 3 th the P\&S; it is not a core problem. Here it is:

Ten Martian zilcties will buy exactly the same number of 2-1/2 inch Macintosh apples in a given market on a given day as two U.S. dollars. Thus, one zilch is the equivalent of
A. $10 ¢$
B. 20 c
C. 40 c
D. 60%

A glance at the STUBY GUIDE corroborates the fact that this is another multiple-choice question. Apparently 10 zilches is the equivalant of $\$ 2.00$, so one zilich must be worth 20c. This is answer B, so if you use the reveal crayon fa box B you will bring out the instruction $18[b]$ indicating that page 18 , item [b] in the PSS has the solution. Whether you were right or wrong fa your selections. is is important that you read and anderstand the solution. If you had chosen any answer other than B, you would have revealed an X as before. There is no true-false question, hence you can now go on to question 4.

Here is your first modified true-false question:
True or false? Five Martian zilches will purchase more aflk than 20 U.S. dimes.

Note the ftalicized word. Read the statement and (a) if you decide it is true, siraply crayon the T -box on the STUDY GULDE; (b) if you feel that it is false, write a word that can replace more and thereby make the statement true. Aster you have written the correcu tion word on the line under the F rectangle, then, and only then, you are to reveal the answer with the crayon. In this particular instance, the correct answer is "false" and you would write in the word "less" in place of more. Your reveal erayon will bring this out, too. If you had selected "true" as your answer, the crayon would have revealed an X inside the T-box. So, after writing "less" you would see tevealedt "less (21[d])." At this point in an actual lesson, you would turn to this page and item in the PSS and read it carefully before contiruing the sequence.

Continuag with the remedial loop:
Another multiple choice question:
In order to have filled your 18-gallon tank with gasoline in 1960 in Septimus, Ohio, you would have spent at least
A. 15 zilches
B. 21 zilches
C. 23 zilckes
D. 27 zilckes

The correct answer is, of course, 27 zilches since each zilch is worth 20 c and each gallon costs 30 c , so you would reveal box D and find inside the instruction "27[b]," After reading the solution, you again encounter a check $T-F$ question which is then angwered as before by revealing either the T or F box in question 5 . Any answer other than D above would have revealed an X just as described for the previous multiple-choice question.

Step 5.1 Everyone is now expected to devote some time to the Infornation Panel, "The Currency of Vemus" and then

Step 5.2 select the redium he wants for running through the asdia visual, COINAGE ANB EILLS OF THE ENNER PLANETS.

After that is finished, everyone starts once again on an equal footing with the core question 6 .

And so forth.

?
 INSTRUCTDR MANUAL

PREFACE

This manual was prepared as a reference and guide for Instructors of the Naval Academy Self- Paced Fhysica Course. Additional orientation is provided by the Course Managex.

Contained herein are:

1. Notes to the Instructor,
2. A deacription of the Management Sequence, and
3. A flow, chart which reflects a general overview of the operational functions of the course.

It is suggested that the Instrictor familiarize himself with the course materials and the following stadent "hand-outs"-

Course Policy
The Student Manual
The Self-Paced Laboratory

NOTES TO THE INSTRUCTOR OF SELF. PACED PHYSICS

1. Introduction

The methods and operation of the self.paced physics course may seem strange to new instructors as well as to the studenta. This information is presenteci to assist the instructor ln developing his individual class policies. It is presumed you are familiar with the Stuatent Manual and Course Policy Statement.
2. Objective

The objective of the course is to enable each midishipman to complete the tasks defined by the Terminal Objectives (TOs). If you have not done so previously, you should read the TO_{s}, as they constitute the most accurate definition of course content. Because of the way the Problem/Solution books have been constructed, successful completion af all the core questions should cover all the $T O_{B}$. Since the core questions were also designed to provide a path for fast students, they are frequently complex problems that combine elements of several TOs. Due to the limited time available for testing; the body of TOs is ampled randomly during Progress Checks and Diagnostic Tests.

NOTES TO THE INSTRUCTOR OF SELF. PACED PHYSICS (Cont d)

3. Class Atmosphere

There are few constraints on how you use clask time to move the students through the material. If your class size permits, you are encouraged to use Room 203 as your regular classroom. Initially, a certain amount of encouragement may be needed to steer the midshipmen to the various media. You should try as many of the media as time permits yourself so you can recommend a particular Audiovisual if a nidshipman is having trouble in a specific area. You may wish to add additional demonstrations or conduct small topical lectures secasionally. Comprehensive reviews prior to Diagnostic Tests are frequently given.

3. Student Progress

One of the by products of the course organization is the early identification of potential failures, before they reach the Diagnostic Checks. Tbiss early identification can be done most effectively by careful screening of study guide responses and progress check reaponses. The individual prescription for assistance is in your hands, but the early identification of these individuals and the variety of materials available should provide you with considerable flexibility.

NOTES TO THE INSTRUCTOR OF SELFF-PACED PHYSICS (Cont'd)

5. Areas of Concern

a. Minimum Lecture. You, as well as some of your midshipmen, may feel uncomfortable, initially, because you are wot conducting lectures during most of the class time. Experience has shown that most students adapt readily to the self-paced class rontine within four to six weeks. You may choose to lecture frequently; however, you will probably have little time left to grade progress checks or counsel slow students, except in EI (Extra-Instruction) Sesstons. Another by-product of the course organization is to move a substantial amount of student counsel ing and remedial work into the classroom.
b. Stadent Progress. Because of the great amount of material covered by the course, you will soon find students dropping well behnod the average (or, from your view, a desirable) class progress. Your auccest in keeping the class moving will be limited only by your imagination. One reason for the apparently slow cless progress may be confusion between a very weak physics student and a good student who chooses to "pace" himself to the speed of slower ciassmates. Careful acreening of study guide and progress check responser can usually separate the two.

The Management Sequence

1. Each stadent is issued one prime textbook; at least two other supplementary texts are at all times avanable in physics or in the library.
2. Each student is issued a Student Manual intended to supply the student with all the procedural information required.
3. Course work begins with the istuance of Segment 1 of Problems and Solutions and the Study Guide for the same Segment. The Study Guide is a latent image type on which sequencing information is revealed by means of a special crayon.
4. The Study Guide featurea are:
(a) A reading absignment indicating prime reading and supplementary reading, both clearly identified.
(b) Core problems identified by score lines over and under the problem number.
(c) Remedial loop problems ("enabling problems"), The instructions for short-circuiting the locps, or following them, are contained in the Study Guide for each individual set.
(d) Titles and directions for Information Panels con-
tained in the Problems and Solutions.
(e) Titles and directions for Audiovisuals. These are available in three formats:
(1) Video tapes;
(2) Talking Books;
(3) Ilustrated Texts
(f) Homework assignment, generally in the form of
additional problems in the prime text.
5. The Problems and Solutions features are:
(a) Section 1: Froblems and diagrams in numex, cal
sequence.
(b) Core problems identified by enclosing ach one in a box.
(c) Information Panels preceding core groups.
(d) Sexmbled problem solutions: directions for reaching solution is revealed only in the Study Guide when correct answer is chosen.
(e) Fach solution for core and core.primed questions is followed by a true.false question whose answer is derivable from the solution to which it pertains. These Tr's are anwwered in special boxed sections of the Study Guide. NOTE: Each core problem which is answefed incorirect. ly requires that the student follow the remedial or enabling loop which
always conclures with another problem having the game conceptual basis as the core problem initially missed. Such problems are called "cos ;-primed."
(f) The scrambling process used for the solutions is extremely difficult to compromise, The time required to short. circuit the response pattern is expected to be too great to make it worthwaile.
6. The Progress Check. This is a form of test which follows a unit of work, usually three successive Segments. The Progress Check is graded by the teacher. The performance of the student is evaldated and be is then guided into one of the chanmels indicated below. To be eligible for the Progress Check, the student must subrit to his nstructor. all of the relevant reveales Study Guides for that unit.
(a) Using a predetermined cut-off grade, the student is given the "go" signal if his performance is above this level. We is also given a fet of remedial suggestions in the form of reading, programmed material, films, etc.
(b) If his performance falls below the cut, off, he is given a "stop" fignal with remedialn, Efter which he re-takes a Progress Check. Questions on these checks will be randomized so that no two students ever take exactly the same examination, nor does the same student take the
sarne check on the second round.
(c) II his performance falls below cut-off on the retake, he will be given individual tutorial aosisiance and required to take a third test. Disposition of the studant after the third failure wili ?eft to the chaiman of the physics committee at the Acaderny.
7. Quarteriy Diagnostic Tests. These teats will be earef:ily generated to teft for recognition and recall, understanding of concept ability to recognize concepts which appear in problems, and ability to solve problems. These tests will all be of the multiple choice variety, with response mechanism suitable for computer grading. One of the quarterly diagnostics wilt replace the mid. term examination and the last of them will be administered about one week before the atandard final examination.
8. At the end of each quarter the ingtructor will submit a diagnosis and recommendations based upan study guide respanses, Performance on Progress Checks, and quarter diagnosties. Possible recommendations include contimuation of sequence, repetition of epecific segments, further use of ather prograrn texts, additional tutariais, and dropping out.
9.

SELFF PACED PHYSICS COURSE
(Page 1 of three pages)

SELE-PACED PHYSICS COURSE (Page 2 of three pages) (Cont'd)

1

SEGMENTS 6-10

 1

DEVELOPRED AND PRODUCED URDER THE
D.S. OFFICE OF EDUCATION, BUREAD OF RESEARCH, PROJECT FB-0446, FOR THE U.S. NAVAL ACADEMY AT ARMAPOLIS. CONTRACT MOOO600-68C-0749.

NEW YORK INSTITUTE OF TECHNOLOGY, OLD WESTBUEY,

INFORMATIOA PANEI.
The Vocabulary of Circular Yotion

OUJECTIV:

To dicfine and interrelate some of the basic terns used in discussfag circular motion.

As soon as you start this segment, you become involved with a few words and plirases thet arc worth a brief discussion.

H:VOl.UTIGNS PER MINITE (rev/min) and REWOLUTIONS PER SECOND (rev/sec). A particle completes a single revolution in circle when it moves from any arbitrary starting point, around the circle, and back to the samo point ready to start a second identical circular sweep. If it completes 5 such revolutions in one minute, it is said to have a frepuency of 5 rev/min. If the frequency of a given particle in circular motion is $120 \mathrm{rev} / \mathrm{min}$, it may also be expressed as $2 \mathrm{rev} / \mathrm{sec}$.

TANGBTIN VBLOCITY (v). This is a vector quantity whach expresses the instantaneous specd of the particle in a direction tangent to the circle in whicli it moves. If the particle's speed is constant, then the magnitude of the tangential velocity is constant but its direction is always changing. The tangential velocity vector is always perpendicular to the radfus of the circle of rotation.

PARIOD (N). The period is the time required to eomplete one revolation. If the frequency (f) of the motion is, say, $2 \mathrm{rev} / \mathrm{sec}$, then the period \boldsymbol{i} is $1 / 2$ sec. Clearly, period and Erequency are inversely related, one befing the recfprocal of the other.

$$
I=1 / £ \quad \text { or } \quad \ddagger=1 / T
$$

Period may be expressed in any convenient unit of time while frequency is generaliy expressed in reciprocal time units. That is, the frequency of the particle above is $2 \mathrm{sec}^{-1}$.
ancular vilocity (ω). This quantity is most conveniently expressed in radians per second (rad/sec), and is defined as the angle swept out by the radius vector of the particle per unit time. Although angular velocity is a vector quantity, we will consider only the magnitude of the vector, expressed in rad/sec, at this time. Suppose you were doaling with a particle wisich has a period of 1 sec . This vould mean that the radius sweeps out 2π radians in 1 sec, hence the angular velocity would be 2π radians per second. If the period were half of that, that is, $1 / 2 \mathrm{sec}$, the motion would be twice as fast and the
continuct
angular velocity wouid then be 4π radians per second. Thus, period and angular velocity are related as follows;

$$
\omega \Leftrightarrow 2 \pi / T
$$

and since $T * 1 / f$, then:

$$
\omega=2 \pi f
$$

DISTANCE MOVEL, i PARTICLE. The instantaneous velocity of a particle in circular motion is related to the angular velocity by the expression:

$$
\boldsymbol{v}=\boldsymbol{u} \mathbf{r}
$$

where r is the radius. If the particle has a constant speed of 25 cra/sec on the circle, then the distance it moves in an interval of time Δt is:

$$
\begin{aligned}
d & =v \Delta t \\
& =\omega r \Delta t .
\end{aligned}
$$

Tise distance toved in 10 sec would be 250 cm . Should the angalar velocity be known. the tangential speed v may be readily obtained from the expression immediate: y above. The radius r must, of course, be given, too.

In the portion of the work that follows, you will be asked to (1) answer descriptive questions dealing with the vocabulary presented above; (2) solve numerical problems involving these terms and phrases.

PROBLEMS

1. The rim of a rotating bicycle wheel has a tagential velocity of $30 \mathrm{~m} / \mathrm{sec}^{2}$ If 0.5 m is the radius of the rotating wheel, how many revolutions per minute (rev/min) would be recorded by a tachometer? (A tachometer is an instrument used to measure revolutions per mimute.)

INFORMATLON PANEL
Characteristics of Uniform Carcular Motion

OBJECTIVE
To discuss the signtficance of radial acceleration in uniform circular mation.

The phrase "unifom eircular motion" describes a special case of circular motion in which the particle moves with constant speed, traversing equal lensths of arc in equal times. The magnitude of the tangential velocity is coitstant but its direction cisanges from instant to instant.

Students tend to think of acceleration in temis of changing speed, relating it to cars, planes, or ships as they speed up or siow down. fowever, the definition of acceleration includes changing direction as well as changins speed. A particle in uniform circular motion is accelcrating despite the fact that the particle moves with constant spead.

The direction of the acceleation of a particle in uniform circular motion is radially imward and is called eentripetal acceleration:

$$
a_{r}=v^{2} / r \text { in } n / s e c^{2}, f t / \sec ^{2} \text {, etc. }
$$

where v is the tangentiad velocity and \mathbf{r} is the radius of the circle. Centripetal acceleration, lika linear acceleration discussed earlier, is a vector quantity.

You are axpected to be able to apply the concept of centripetal acceleration to (1) answer descriptive questions in which it is tavolved; (2) solve problems in which centripetal acceleration must be considered.
2. A particle moves af constant speed in a circulsr path of radius r. The particla makes one complete revolution every second. Calculate the acceleration of the particle if $r * 0.5 \mathrm{~m}$.

A, $\quad 19.8 \mathrm{~m} / \mathrm{sec}$
B. $\quad 12.6 \mathrm{~m} / \mathrm{sec}^{2}$
C. $\quad 10.8 \mathrm{~m} / \mathrm{sec}^{2}$
D. $1.98 \mathrm{~m} / \mathrm{sec}^{2}$
3. When a particle moves in a circuiar path with constant speed, $\ddagger t$ is accelerating because the magnitude of its velocity is changing.
4. "UniÉorm circular notion" refers to:
A. any circular mation
B. circular motion with tangential acceleration
C. circular motion without any acceleration
D. efrcular motion with constant speed
5. Choose the one cortect statement below pertaining to a particle in wniform dizcular mation.
A. Centripetai acceleration is directed radially outward from the center of the circle of motion; this acceleration arises from the change in direction of tangential velocity, but not from a change 1 ts speed.
B. Centriperal acceleration is directm radialiy inward toward the center of the circle of motion; tinis acceleyation arisea from the change in diraction of tangential velocity, but not fros a change in speed,
C. Centripatal acceleration is difected radially inward toward the center of the circle of motions this acceleration arises from the change in direction of tangential velocity, and from a change in speed.
D. Centripetal acceleration is directed radially outward Erom the center of the circle of motion; this accelerstion arises from the change in direction of tangential velocity, and from a change in speed.
6. The magnitude of acceleration for a particle undergoing uniform circular notion is v^{2} / r. In this expression, r is the radius of the circle and v refers to
A. the magnitude of the tangential velocity of the particle
B. the mannitude of the outward velocity of the particie (tadially outward)
C. the magnitude of the inward velocity of the particle (radially inward)
D. the radial speed in the radial direction of the particie
7. A particle of mass in is noving in a horizontal circle of radius x and making if revolutions per second. If the radius is tripled and the frequency is doubled, find the ratio of centripetal accelerations when the radius is increased fron r to $3 r$.
A. $1 / 6$
B. $1 / 12$
C. $1 / 3$
D. $2 / 3$
W. Tho blacks are lowered by a winch alade of two concentric cylinders. The smallet cylinder has a radius of 0.04 m , and the larger cylinder has a ridius of 1 w. If the winch turns at 3 rev/min, what are che vercleal velocities of block one and bla : two (v_{1} and v_{p})?

INFORMAETON PANEI
Centripetal Force

OBJEGTIVE

To apply the concept of centripetal force to problem situations in undfertichetulat motion.

You may find this lite of remsoning helpful in arriving at the correct concept of centripetal force:
*If there is no urbalanced force acting on a movi\#g particle. it will continue to nove with constant speed in a straight line:

* particle in uniform circular motion does not move in a straight line. hence it must undergo acceleration;
*This acceleration is diracted radialiy inward, hance there mat be gn unbalanced force acting radially inward; we call this force the centripetal force F_{c}.
*The ragnitude of the centripetal force is given by;

$$
F_{c}=m v^{2 / r}
$$

When you label a force as "centripetal", you are terely stating that it acts inward toward the ceater of rotation, but this name gives no information about the nature of the force, nor does it tell anything about the body that is responsibie for it. A centripetal force is not a new type of force but in so called only becauge the name is descriptive of itp behevior. For a stone whirled in a horixental circle at the end of atring, the centripetal force is an elastic force provided by the string; for a satellite revolving around the Earth, the centripetai force is gravitational attraction: a charged particie circling within the "dees" of a cyciotron is subjected ro a magnetic centripetal force; and $\$ 0$ on.

The problems you will encounter in this section are largely of the composite or maltiscop uariety in which centripetal force is but one link in the chain of reasoning. gefore starting to work out such problems, you are urged to organize your material in writing as follows:
(1) Make a 1itt of all the "knowns" given in the problem etatem ment in syabolic form. For example, if you are told that the aase is 2 kg , the langth 98 cta , and the angle $30{ }^{*}$ (see (8), write

Given:
$m=2 \mathrm{~kg}$
L. $=98 \mathrm{~cm}=0.98 \mathrm{~m}$
$\theta=30^{\circ}$
(2) Write down the "unknowns". the quantity you tuat ultimately fince, again in syosbolic form. In $P 8$, the unknown is the period τ Bo

Find: r (period)
(3) Next, write all the equat quantitien so each other and use shem to help you express atl eubsidiary unknows in terms of the knowns.
(4) You must finally obtain an equation in which only one unknown remains before you can substitute numbers.

In this section, you are expected to (1) analyze the relacionships between quantities involved in describing centripetal force; (2) solve problems in which centripetal force is the central concept: (3) solve probleras in which centripetal force is a subsidiary constdfration, that is, only one of a number of concepts which must be interrelated to solve the problem successfuliy,
9. The figure shows a mass m $m \mathrm{~kg}$ revolving in a horizontal circle. The mass is suspended frow a string 98 cr in length. The wotion of che string traces out a cone. If the string makes un angle of 30° with the vertical, how long does it take for the mass to make one revolution?

10. A body of mass m revolves In a circie of radius r with speed V. winat is the magnitude of the eentriperal force, fe. acting on the mass?

A.	$F_{c}=m v^{2} t r^{2}$
B.	$F_{c}=m v^{2} t r$
C.	$F_{c}=8 v^{2} r^{2}$
B.	$F_{c}=m v^{2} r$

11. A man made satellite orbits the Earth in a circular path of radius x. The centripetal force and the force due to gravitational attraction acting on the satellite are
A. the same force
B. different forces
12. A boy apins a $2-k g$ stone in a horizontal circle at the end of a string. The string is 2 il long, and has amaximum breaking otrength of 100 nt . What is tive maximun speed the stone may have without breaking the string?
13. At a carnival, cars in the "airplane ride" are muspended froma cable 64 feet long attached to a verticsl pole which rotates at 1 radian per second. Find the angle ot that the cable makes with the horizontal.

14. A copper penny is placed 4 inches from the center of a hi-fi record. The record plus penty are then placed on a phonograph turaw table ($331 / 3$ rev/ain) and the switch is turned on, the coefficient of static and kinetic friction are 0.1 and 0.05 respectively. At what angular velocity will the pentry begin to slide?
15. A man plans to perforis the loop-the-loop with his bicycie at the councy fair sae the diagram below). The radian I is equal to 10 ft , What is the mintaum speed at which he ran safely perform the stuix:

A. depends on the man's mass
B. $12.2 \mathrm{mi} / \mathrm{hr}$
C. $20 \mathrm{ft} / \mathrm{sec}$
D. $9.6 \mathrm{~m} / \mathrm{hr}$
16. A bobsled speeds around the curve shown in the figure below, The curve has been well iced and can be considered frictionless. The sled mowes in a eircular arc of radius $=100 \mathrm{~m}$ and banking angle of $30^{\prime \prime}$; what is its speed?

Curve view from the top

30°

Bebsled on banked curve
[a] CORRECT ANSWER: FALSE (change magnitude to direetion)
Speed has been defined as the sagnitude of the velocity vector; in this problem, speed 15 constant. Since the particle travela in a circle, the direction of the velocity is changing at a constant rate. One would anticipate that the particie has a conatant acceleration wdie to its constant change in direction.
[b] CORRECT ANSWER: A
A - As the gatellite circles the Earth, only one force pulls the satelifice in a circular orbit. This force is an atriactive force that exista between any two masses. Since the gatellite moves in a circie, this force must equal $\mathrm{mv}^{2} / \mathrm{r}$.

[c] CORRECT ANSWER: A
A - The tangeutial velocity v is related to the radial acceleration a_{r} by

$$
a_{r}=v^{2 / r}
$$

[a] CORRECT ANSWER: 1.85 sc

Your reasontig may be something like this:

1. In order to find the time for one revolution of the mass, you must know the velocity of the wass and the path length of one revolution.
2. One revolution is $2 \pi r$ in length where x is the radius of the horizontal circle in which the mass moves.
3. The magnitude of the tangential velocity v can be found from its relationsifp to the centripetal force, F_{c},

$$
\mathbf{F}_{c}=\operatorname{mv}^{2} / \mathbf{r}
$$

4. In order to determine this force, a iree-body diagran is in order.

5. Tine only force acting in the radial direction is $T \sin 30^{\circ}$ and thus this force must be equal to the centripetal force.

Now in equation form: $E F_{y}=T \cos 30^{\circ}-m g=0$ (because ay $=0$)

$$
T \sin 30^{\circ}=n v^{2} / \mathrm{I} \text { (becouse the mass }
$$ moves in a circle)

Solving for v we obtain

$$
v=\sqrt{\operatorname{tg} \tan 30^{\circ}}
$$

and, of courae, from the diagram, $r=2 \sin 30^{\circ}$.
Finally: the time for one revolution would be

$$
\tau=\frac{\text { distance }}{\text { velocicy }}=\frac{2 \pi r}{\sqrt{r g} \tan 30^{\circ}}=\frac{2 \pi \sqrt{r}}{\sqrt{g \tan 30^{\circ}}}=2 \pi \sqrt{\frac{L}{g} \cos 30^{\circ}}=1.85 \mathrm{sec}
$$

TRUE OR FALSE? The angle θ In the free-body diagram is 30° for this probletn.
[a] CORRECT ANSWER: 573 rev/min
The distance traveled in one revolution is equal to the circumferance. or $2 \pi r$, of the circle. This diacance divided by the velocity would give us the cime for one revolution. The time for one revolution is calied the period and is given by the symbol T.

$$
T=\frac{2 \pi r}{v}=\text { time per revolution }
$$

You might also notice chat

$$
\frac{1}{T}=\text { revolutions } / \text { time }=\text { irequency } \equiv f
$$

wifch is the required quantity.
We have

$$
\begin{aligned}
£ & =v / 2 \pi r \\
& =9.55 \mathrm{revolutions} / \mathrm{sec}
\end{aligned}
$$

This can be converced to revolucions per minute as follows:

$$
£=9.35 \frac{\mathrm{rev}}{\mathrm{sec}} \times 60 \frac{\mathrm{sec}}{\min }=573 \frac{\mathrm{rev}}{\mathrm{~min}}
$$

TRJE OR FALSE? The period of a rotation increases as the number of revolutions per minute increases.
[b] CORRECT ANSWER: B
I - The word "centripetal" meang center-aceking or coward the center. The velocity of particie in uniform circular motion changea in direction, but the apeed (or magnitude) renalns constant.
[c〕 CORRECT ANSWER: D
D = The case of a particle movirg in a circle with constent speed is called unifor ircular motion. The velocity vector changes continuously in direct on but not in magnitude.
[a] CORRECT ANSWER: B
B = The most dangerous part of the stunt will come when the man on the bicycle is upside down at the top of the loop. At that point he is mast likely to leave the track. "Just about to leave the track" means that the normal force due to the surface of the track is approaching zero. Therefore, we should solve for this extreme condition to obtain out minfman safe speed.

At the top point, traveling at a velocity v, the oniy force acting on the mian is bis weight. Therefore, se obtain

$$
\Sigma \mathrm{F}_{\mathrm{y}}=-\mathrm{mg}=\mathrm{ma}
$$

This tells us the acceleration is downardy in the radial direction, and equal to the acceleration of gravity, Then

$$
a=a_{r} \neq v^{2} / r
$$

and

$$
v=\sqrt{r_{g}}
$$

TRUE OR FALSE? The minitam permissible speed of the bicycle in a loop-the-loap situation is independent of the mass of bicycle and rider.
[b] CORRECT ANSWER: B
B - For a particle moving in a circle of radiug r and frequency f, the centripetal accelaration ia given by

$$
a_{r}=\frac{v^{2}}{r}=s^{2} r=4 \pi^{2} f^{2} r
$$

Let $a_{i r}$ be the acceleration when the radius $1 a r$ and ajr be the acceleration when the radius $1 s 3 \mathrm{r}$. Thersfore,

$$
\frac{a_{1 r}}{a_{3 r}}=\frac{4 t^{2} f^{2} r}{4 \pi^{2}(2 f)^{2}(3 r)}=\frac{1}{12}
$$

TRUE $O R$ FALSE? in thia problem, a_{x} symbolizes tangential accalecation,
[a] CORRECT ANSWER: $10 \mathrm{~m} / \mathrm{sec}$
Some basic facts about circular motion:

1. Circular motion is alvays accelerated motion. This is due to the fact that even if the speed is constant, there is a constantly changing direction.
2. From liewton's second law, we know that acceleration implies the presence of a force. In a unfform circular motion, this force is called centripetal force. If the centripetai force were not present, the object would fly off at a tangent to the circle. Thus, the centripetal force is the force that holds the object in a circular orbit. The magnitude of the forces can be found from the following:

$$
\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}
$$

where

$$
\begin{aligned}
& v=\text { tangential velocity (speed) } \\
& v=\text { radius, and } \\
& n=\text { mass }
\end{aligned}
$$

Nost probleing involving unfforta clrcular motion require that the total forces which constrain a body to move in a circle are equated to $\boldsymbol{w v}^{2} / \mathbf{r}$.

In the present problen, when $F=100 \mathrm{nt}$ and $r=2 \mathbb{m}$, the speed of the stone is

$$
\begin{aligned}
v & =\sqrt{\mathrm{Ft} / \mathrm{m}} \\
& =10 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

[a] CORRECT ANSWER: $30 \mathrm{rev} /$ min
The only force avallable for keeping the penny in a circular path is the corce of friciion (static). Let's solve for the angular speed at which the static frictional force would be maximum.

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{N}=\mathrm{mg}=0 \\
& \Sigma \mathrm{~F}_{\mathrm{X}}=\mathrm{H}_{\mathrm{g}} \mathrm{~N}=\mathrm{ma}_{\boldsymbol{g}}
\end{aligned}
$$

where y_{s} is the coefficient of static friction and

$$
a_{r} \text { radial acceleration } \omega \omega^{2} r
$$

Therefore.

$$
u_{s} \operatorname{mg} \cdot \pi \omega^{2} r
$$

Solving for w. we obtain

$$
\omega \omega \sqrt{\frac{g^{4}}{r}}
$$

Substitution of numerical values yields

$$
\begin{aligned}
& \omega=\sqrt{\frac{32^{\times 0.1}}{1 / 3}} \\
& \omega=3.1 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Therefore,

$$
\mathrm{rev} / \mathrm{min}=3.1 \frac{\mathrm{yad}}{\sec } \times 60 \frac{\mathrm{sec}}{\mathrm{~min}} \times \frac{1}{2 \pi} \frac{\mathrm{rev}}{\mathrm{rad}}=30 \mathrm{rev} / \mathrm{min}
$$

Thus the penny will sifde off when the turntable attaing the speed of $30 \mathrm{rev} / \mathrm{min}$.

TRUE OR FALSE? The coefficient of kinetic friction mugt be used in the solution of this problea.
[a] CORRECT ANSUER: 8
B - One way to check the answer is to check the dinenstons of the answer. Observe that the dimensions of your answer agree with the dimensions $\mathrm{M} / \mathrm{T}^{2}$ of any force, where $\mathrm{M}=$ mass, $L=$ length, and $T=$ time. In our problem.

$$
\mathrm{F}=\mathrm{tw} \mathrm{v}^{2} / \mathrm{r}
$$

which has titensfons

$$
M L^{2} / T^{2} L
$$

reducing to the dimensions of force, ML/T2.
Remember that this force is always directed towards the center of the circle.
[b] CORPECT ANSWER: $23.8 \mathrm{~m} / \mathrm{sec}$
A freerbody diagran of the sled in the eurve would indicate anly two

forces acting on the sled. The nomal force must prowide a component to balance the wefght and a component to cause the radial acceleration,
continued

```
\(\Sigma F_{y}=N \cos 30^{\circ}-m g=0 \quad\left(f r o m a_{y}=0\right)\)
    \(N \sin 30^{\circ} * \operatorname{mv}^{2} / r \quad\) (radial force must equal \(m v^{2} / r\) to
    maintain circular motion)
```

Eliminate N and solve for v :

$$
v=\sqrt{r g \tan 30^{\circ}}
$$

Notice that the mass of sled and passengers is not inportant, so the bob-gled course is properly banked for people of all sizes.

TRUE OR FALSE? The vertical component of the notmal force N is not equal in magnitude to the weight mg.
[a] CORRECT ANSHER: C
C - In all problems one should carefully decide on titree discinct questions:
(a) What must I Eind? "Unknows"
(b) What information has been given? "Knowns"
(c) What equations do I know that relate the "knowns" to the "unkowns"?

In chis problem for example,
GIVEN

1) constant opeed
2) circular path
3) Tadius of circle
4) time to travel one revolution

Since the speed is constant, the particle has oniy radial scceleration and to tangential component of acceleration. An equation zelating same of these quantitien is

$$
a_{r}=v^{2} / \zeta
$$

cont inued

We must determine the velocity, v.

$$
\text { Possible Equation: } v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}
$$

We know that the particle travels one revolution in one second. The distance traveled in one revolution is the circumference of the circle, or $2 \pi r$. Therefore.

Hence

$$
\begin{gathered}
v=\frac{2 \pi r}{1} \text { meters } \\
a_{r}=\frac{4 \pi^{2} r^{2}}{r}=4 \pi^{2} r
\end{gathered}
$$

TRJE OA FALSET The distsnce traveled by a particle in making two complete revolutions in circular motion in $4 \pi r$ where x is the radius of rotation.

La $\}$ CORREGT ANSWER: $v_{1}=0.01256 \mathrm{~m} / \mathrm{sec}, v_{2}=0.314 \mathrm{~m} / \mathrm{sec}$
The sopas unuind at the name speed with which the cylfuders turn; that土日, zheir tangential velocities. Tangential velocity v is directly proportional to the radius F. AB you aight recall,

$$
v=\omega t
$$

*here m angular velocity in radians/second.
In our problem.

$$
\omega=3 \frac{\mathrm{rev}}{\mathrm{~min}} \times \frac{1}{60} \frac{\mathrm{sin}}{\mathrm{sec}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}}=0.314 \frac{\mathrm{rad}}{\mathrm{sec}}
$$

and

$$
v_{1}=\omega r_{1}
$$

becomes

$$
v_{1}=0.314 \frac{\mathrm{rad}}{\mathrm{gec}} \times 3.04 \mathrm{~m}=0.01256 \mathrm{~m} / \mathrm{sec}
$$

Similarly,

$$
v_{2} \cdot \omega r_{2}
$$

and gives

$$
v_{2}=0.314 \frac{\mathrm{rad}}{\mathrm{sec}} \times 1.0 \mathrm{~m}=0.314 \mathrm{ra} / \mathrm{sec}
$$

TRUE OR FALSEt In this problem, the angular velocity of the maller cylindar is exactly the saase as the angular velocity of the larger cylinder.
[日] CORRECT ANSNER: 30°
Using Newton's second law, the sum of the horizontal forces, LF_{h}, is

$$
\begin{equation*}
\Sigma F_{h}=T \cos \theta=m a \tag{i}
\end{equation*}
$$

Since the particie is moving in a circular path with constant speed, the acceleration is the centripetal acceleration. Therefore, equation (1) may be written as

$$
T \cos \theta=\sin ^{2} T
$$

where r is the radius of the circular path.

From the dJagram
cmecos θ
Substitution of $c=i \cos \theta$ in equation (1) yielda

$$
\begin{equation*}
T \cos \theta=m 4 \pi^{2} f^{2} \ell \cos \theta \tag{2}
\end{equation*}
$$

The sum of the forcas in the vertical direction, $E F V$, is
or

$$
\begin{align*}
& \Sigma F_{V}= T \sin \theta-m g=0 \\
& T \sin \theta=m g \tag{3}
\end{align*}
$$

Dividing equation (3) by equation (2) we obtain

$$
\sin \theta=\frac{g^{2}}{\omega^{2}}
$$

$=1 / 2$
Therefore, $\quad \theta=30^{\circ}$

TRUE OR FALSE? The centripetal farce acting on the carnival car fa the torizontal component of the tension in the otring.

note

ALL WRITTEN MATERIAL APPLICABLE TO
THE FOLLONING SEGMENT IS CONTAINED
in The pages betueen this colored
SHEET AN THE NEXT.

OBJECTIVE

To calculate the work done by a constant force, that is, a force which varies neither in magnitude nor direction.

In the simplest situation, where the force applied to a body is constant in both direction and magnitude and where the resulting motion occurs in a straight line. we define work at the product of the magnitude of the force and the diaplacement of the particle on which the force acte.

Since force and displacement are both vectors, cate must be taken to tuse a consistent system of symbols. In our work we will continue to use for the position vector. Displacement will be designated $\%$ 高 so that a particle moving from position \vec{f}_{1} to \vec{F}_{2} will undergo a displace-
 two differentials may be used interchangeably although dis will be the preferred form.

The work W done by constant force $\frac{\mathrm{F}}{\mathrm{F}}$ acting on a body which moves through a displacement $\mathbb{\delta}$ is $W=F \cdot \vec{g}=F s \cos \theta$ in which θ is the angle batween the two vectors.

If we designate the component of the force in the sonirection as F_{B}, then

$$
F_{\mathrm{g}}=\mathrm{F} \cos \theta
$$

and so

$$
W=F_{s} s
$$

In working through the problems dealing with the work done by a constant force, you will be expected to
(a) justify the eonclusion that the work done by centripetal , force on a particle moving uniformly in a circle is zero;
(b) calculate the work done on a given masa when moved up an incline by a given distance;
(c) find the work done on a given mass when lifted vertically over a given distance.

PROSLE

i, A 2-ing particle is moving in a tinale wish an angular velocity of 10 racifec. The diameter of the circle is im. How much work in done on rite particie by the cemtripetal force during one revolution?
A. $400+1$
B. 200°
C. 100:
D. Zezo j
2.

A safe naving a mass of 2 glugs is moved up a 30° frictionless inelined plane for a distance of is ft. Calculate the work done on the safe.
3. A book of mass in is Iffed a rericici distance y near the surface of the Earth. Which of the following expressions gives the work done on the book?
A. ($1 / 2$)my
B. my
C. (1/2) mgy
D. mgy
4.

A 3-kg block is pushed 15 ft along a Erictioniess incisned plane. The work expended is 720 ft -ib. Find the angle of incline θ.

INFORMATIOM PANEL
Work Done by a Varying Force

OBJECTIVE

To calculate the work done by f force that varies in a known manner.

The force that causes the displacement of a particle of ten changes in magnitude and/or direction frop instant to instant in a mathematically predictable way. For example. the magnitude of a force is often a Eunction of the displacement of the particle to which the force is applied: as a spring is stretched or compressed, the force needed to produce each successive increment of displacement becomes larger as the end of the spring moves farther from its rest position. In this case. the work done is no longer a simpla product of force and displacement.

When the force varies in magnitude, or when the force and diaplacement are not in the Bane direction. the work done is given by

$$
w=\int_{s_{1}}^{s_{2}} \vec{F} \cdot d \vec{s} \quad \int_{s_{1}}^{s_{2}} F_{s} \mathrm{ds}
$$

In the graph of F_{s} vs s, it can be seen that the wark due to a displacement fron s_{1} to s_{2} is the area under the curve between the end points s_{1} and s_{2}.

You will find the problems in this section require that you be able to
(a) calculate work when the force is given as a function of displacement (in equation form);
(b) calculate work when the dependence of force on displacement is shown in the form of $\pm \mathrm{graph}$;
(c) calculate work in che special cases when the force is a ainple restoring force, or a gravitational force near the Earth's surface.
5. A mass $m * 2 \mathrm{~kg}$ moves in the direction of an applied force varying with displacement according to the equation

$$
F=m\left(a+: S x^{2}\right)
$$

wher $a * 5 \mathrm{~m} / \mathrm{sec}^{2}, 8=15 \mathrm{~m}^{-1} \sec ^{\sim}$? , and x is the displacement. Find the work done on the mass during the first 2 m of its journey.
A. 260 j
B. 1301
C. 100 i
D. 20 j
6.

7.

The graph shows the deperdence of F_{s} on the displacement a. It is found that the work done from $s_{1}=0 \mathrm{~m}$ to $s_{2}=90 \mathrm{~m}$ is equal to 450 j . Find the maximum value of F_{s}.

The diagram shows the linear dependence of F_{s} on the displacement 8. Compute the amount of work done between $s_{1}=10 \%$ and s_{2} * 20 m .
8. A mass $m=2 \mathrm{~kg}$ moves in the direction of an applied force varying with displacement x according so the equation

$$
F=m\{a x+b\rangle^{2}
$$

where $a=1.0 \mathrm{~m}^{-1 / 2} \sec ^{-1}$, and $b=2.0 \mathrm{~m}^{1 / 2} \sec ^{-1}$. Find the work done on the nass during the first 3.0 th of its journey.
A. 130 j
3. 110 j
C. 94 f
D. 78 j

INFORMATION PANEL
Algebraic Signs in Work Problems

OBSECTIVE

To recognize that work may be designated as either positive or negative and to use the accepted sign convention in solving problems that call for it.

It is convenient to assign an algebraic sfgn to work under certain condirions. Fundamentally, the sign indicates which "body" actually dues the work.

Suppose we are trying to find the work done by a body A on body B and it happens that body B is actually doing the work on body A. Then as far es our original astumption is concerned, that is, that body A Is dofng the work on body B, we would have to say that the work WAB is a negarive quantity.

By convention, the work done by a physical system on its enviroment is taken as positive. If the work comes out negative, then we know chat the enviroment hed done work on the system rather than the other way around. In problen 9 that follows, the system consists of a spring resting on a frictionless rable with one end of the spring fixed in position; the "enviroment" int this problem is a $5-\mathrm{kg}$ \#ass. As you work through thz problem, the need for the sign convention will become apparent.
continued
A spring is said to sbey Hooke's law if the force necessory to stretch or compress the sfring is directly proportional to che amount of strecching or compression. Wichin limits, most springs obey Hooke's lisw.
If the equilibrium position
of the free end of a spring
is x_{0}, the farce ${ }^{1}$ necessary
to stretch the spring to a new position x is given by

$$
\vec{F}^{\prime}=k\left(x-x_{0}\right\}
$$

where k is the force constant of the apring. In accord with our convention, the work done by the spring on its enviroment is positive.

From Newton's third law, the force of the spring on the block is

$$
\overrightarrow{\hat{F}}=-\vec{F}^{\prime}=-k\left(x-x_{0}\right)
$$

or, written in scalar form,

$$
F=-k\left(x-x_{0}\right)
$$

In working through the following problems, it is anticipated that you will be capable of
(a) recognizing that the magnitude of the force at any instant depends on the displacement of the body;
(b) computing the work done on the system of by the system, lepending on the algebraic sign of the final answer.
9. A 5-kg block is attached to the spring shown in the diagran at the top of the page. The spring, when unstretched, has a length of 0.15 m (including the block), and ics force constant k is equal to $2000 \mathrm{nt} / \mathrm{m}$. Compute the work done in moving the block from $x_{1}=0.10 \mathrm{~m}$ to $x_{2}=$ 0.25 m .
A. -750 j
B. 52.5 j
C. $-7.5 j$
D. -52.5 J

objectuve

To solve protlems in work and power using consistent units throughout the solurions.

Far your convenience we have ifsted the power and work units commonly used in the three eysters with which we deal in this course.

	Hoxig (energy)	POWER
MKS	Joule (f) or newton-meter ($n t-m$)	watt (w) or foule per second ($1 / \mathrm{sec}$)
British	foot-pourd (ft-1b)	$\begin{aligned} & \text { foot-pound per second } \\ & \text { (ft-Ib/sec) } \\ & \text { foot-pound per minute } \\ & \text { (ft-ib/min) } \end{aligned}$
\cos	erg or dynecentimeter	erg per second (erg/sec)
Misc.	gritish thermal unit (Btu)	horsepower (hp)
	kilowatt-hour (kw-hr)	

Useful. Conversions

1 watt-gec $=1$ foule $=1 \mathrm{nt}-\mathrm{m}$
1 erg $=1$ dynemem $=10^{-7}$;
$1 \mathrm{hp}=550 \mathrm{ft}-\mathrm{ib} / \mathrm{sec}=33,000 \mathrm{ft}-1 \mathrm{~b} / \mathrm{min}=746 \mathrm{w}$
$1 \mathrm{kw} \cdot \mathrm{hr}=3.6 \times 10^{6} ;$
1 8tu $=778 \mathrm{ft}-1 \mathrm{~b}$
The questions and problems in this section require that you be able to
(a) use the relationshtp $P=\vec{F}+\vec{v}$ in numerical and aymbolic work;
(b) find the instantaneous power supplied by an oscillating spring at a given displacement;
(c) combine work, power and frietion concepts in numerical applications.
10. An escalatot. inclined at 37° from the horizontal. has a motor that can deliver a maximum porer of 10 hp . If the escalator is moving with a constant speed of $2 \mathrm{ft} / \mathrm{sec}$. what is the maximum number of passengers. with an average weight of 150 lb , that the escalator can handle? (Neglect frictional losses.)
A. 30
B. 18
C. 4
D. 31
11.

A mass mattached to a spring with force constant k is oscillating back and forth between points x_{1} and x_{2} on a frictionless horizontal table. What is the instantaneous power supplied by the spring at the instant the mass passes through the midpoint x_{0} ? (In the following, v is the speed of the mass at the moment ft passes through point $x_{0}{ }^{\text {. }}$
A. $k x_{0} \mathrm{~V}$
B. $k\left(x_{2}-x_{0}\right) v$
C. $k\left(x_{2}-x_{1}\right) v$
D. zero
12. A constant horizontal force of magnitude F is required in order to slide a 100 -kg block on a horizontal floor with a constant opeer of $5 \mathrm{~m} / \mathrm{sec}$. The coefficient of kinetic friction between the biack and the floor is 0.2. How much power must be supplied by the agency responsible for the force F?
13. A 2500-1b car maintains a constant speed of $60 \mathrm{mi} / \mathrm{hr}$ up a road inclined at 20° from the horizontal. Assume that frictional forces can be neglected. How much power does the engine of the car develop?
14. An escalaror, inclined at 37^{*} from the horizontal, has a motor that can deliver a maxirum pawer of 5 hp . If the escalator is moving with a constant speed of $1 \mathrm{ft} / \mathrm{sec}_{\text {, w }}$ what 15 the maximum umber of passengers, with an average weight of 150 lb , that the escalator can handle? (Neslect frictional losses.)
A. 18
B. 30
C. 31
D. 41

INFORMATION PANEL
Ktnetic Energy

OBJECTIVE

To apply. the definicion of kinetic energy to descriptive questions: to solve numerical problems involving kinetic energy only.

The kinetic energy of a moving mass is defined as its ability to do work by virtue of its motion. Energy of any kind is a scalar quantity; xinetic energy K is determined for any given body by the relationship

$$
\mathrm{K}=1 / 2 \mathrm{Ev}^{2}
$$

in which m the mass of the body and $v *$ the magnitude of its valocity, or its speed.

continued

A mass moving with constant speed has a constant k inetic energy. The kinetic energy of a mass moving with changing speed varies from instant to instant, hence the instantaneous kinetic energy is a function of the instantaneous speed at the moment in question.

As a check on your understanding of kinetic energy, you must be able so
(a) solve a problem involving the kinetic energy of a projectile at the highest point of its trajectory;
(b) determine the kinetic energy of a given movitg mass, giving attention to units, their conversion, and thair consistency.
15. A 2-kg particle is projected from ground level with an inftial velocity of $20 \mathrm{~m} / \mathrm{sec}$, at 60° above the horizontal. Find the kinetic energy of the particle when it reaches its highest altitude; i.e., where the vertical component of the velocity is zero. (Neglect air resistance, \}
16. A 3000-1b car is moving with a speed of $60 \mathrm{mi} / \mathrm{hr}$. Find its kinetic energy.
17. The kineric energy of a $2-\mathrm{kg}$ projectile at the highest point in its trajectory is 25 joules. It is known that the projectile was fired at an angle of 60° from the horizontal. Find the initial speed of the projectile.

OBJECTIVE

To define the work-energy theorem: to use the theorem for solving symbolic and numerical problems.

The work-energy theorem for a particle states that the work done by the resultarit force applied to a particle is equal to the change in the kinetic energy of the particle. 0 r

$$
W_{R}=K-K_{0} \neq \Delta K
$$

wherein W_{R} * the work due to the resultant force; $K=$ the kinetic energy of the particle aftex the work has been done; $X_{0}=$ the initial kinetic energy before application of the resultant force.

The following can be deduced from the work-enexgy theorem:

1. For a particle moving witi constant speed, there is no change of kinetic energy, hence the work toge by the resultant force is zero.
2. The speed of the partitle along a given line of morion can be changed only when the resultant force has a component along that ine.
3. If the kinetic energy of a particle diminishes, the work done by the resultant force is negatipe; if the kinetic energy increases, the work is positive.
4. The kinetic energy of a mass in motion equals the work it can do before it is brought to rest.
5. The unfts used for work and kinetic energy are identical.

The following problems call for the ability to
(a) solve a problem in kinematics by means of the work-energy theorem;
(b) solve a problem involving a projectile fired at an angle to the horizonial in which you are to determine its kinetic enexgy upon returning to earth;
(c) determine the work required to double the spetd of a given particle;
(d) use the work-energy theorem in calculating the force acting on a body, given the factors needed to find its kinetic energy before and after the force has acted.
18. A block is projected with an initial spead of $8 \mathrm{~m} /$ ser, down a frictionless plane inclined 45° from the horizontal. Pind the speed of the block after it has travelad for a distance of 2.6 m alang the incilne. Use the work-energy theorem in your solution.)
19. A constant force f is used to accelerate a bady of nass m to a velocity $\vec{\forall}$. The force is then removed. How much work is done on the object?
A. Fv
B. $m v^{2} / 2$
C. $\left(F^{2} / 2 m\right) t^{2}$
D. Fut
20. A particie of mass mis moving with a speed v. How mich work must be done on the particle in order to double its speed?
A. (1/2)mv ${ }^{2}$
B. w^{2}
C. $(3 / 2)$ 槒 ${ }^{2}$
D. $2 \pi \mathrm{mb}^{2}$
21. A 2-kg sphere is projected with an initial velocity of $10 \mathrm{~m} / \mathrm{sec}$, at 39.3° above the horfzontal. from the ground level of a horizontal field. What is the sphere's kinetic eneray at the instant if hits the ground? (Neglect air resistance.)
A. 296 j
B. 256 j
C. 196 j
D. 100 j
22. A bullet having a weight of 1 oz, moving with a speed of $600 \mathrm{mi} / \mathrm{hr}$, penetrates a tree trunk to a depth of 11 inches before couning to rest. Calculate the average force exerted on the builet.
23. A block is projected upward on a frictionless inclined plane with an initial apeed of $10 \mathrm{~m} / \mathrm{gec}$. The plane 18 inclined at 45° from the horizontal. Find the speed of the block efter it has traveled a distance of 2.6 m along the incline.

IIFORMATION PANEL

OBJECTYE

To combine the concepts of work and anergy with other kinewatic and ciytamic aspects of physics in solving composite problems.

You have been made aware of the necessity for organizing your work before you begin to substitute numbers in equations dealing with composite probleas. All the rules previously described-itemization of the knowns and unknowns, and writing down the interrelating equa-tions-apply equally well to this section of your work.

The remaining problems in this segment are such composite problems. in workitg these out, you are axpected to use the work-energy theorean in solving problems which require that you
(a) first use Newton's second law to calculate an unknown force and then apply the theorem;
(b) make use of the concepts of friction on an inclined plane to find the speed of a block on the plane after it has traveled a specified distance under the action of a constant force;
(c) calculate the speed acguired by a mass ag the result of the decompression of a spring.
24. A 30 -gn bullet. Eired with a speed of $300 \mathrm{~m} / \mathrm{sec}$; passes through a telephone pole 30 cm in diameter at a point 2 m above ground. The bullet's path through the pole is horizontal and along a diameter. While in the pole the bullet experiences an average force of 2500 nt . If air resistance is neglected, at what horizontal distance from the pole will the bullet hit the ground?
25. A block weighing 16 lb is initially at rest. It is made to move through a distance of 100 ft in 10 sec by constant corce. Find how much work must have been done.
26. A 100 -gm rubber ball is held at the botton of a barrel full of water and then released. While riaing to the surface, the ball experiences an average upward force of 490 dynes (this inctudes the weight of the ball). The barrel is 1000 . ca high. Find the maximum distance through wifh the ball will rise abo:te the barrel.
27. A constant horizontal force $\mathrm{F}_{\text {, }}$ of magnitude 120 nt , is used to move a 10 -kg block up a plane inclined at 37° from the
horizontal. If the block starca from rest, and che coefficient of kinetic friction between the block and the plane is 0.200 , what is the speed of the block after it has traveled 10 m along the plane?
A. $6.56 \mathrm{~m} / \mathrm{sec}$
B. $9.55 \mathrm{~m} / \mathrm{sec}$
C. $12.8 \mathrm{n} / \mathrm{sec}$
D. $3.76 \mathrm{~m} / \mathrm{sec}$
28. A 2-kg block is held at point A on f hotizontal fioor, with a cotpressed spring placed between the block and a wall but not attached to
 the block. The floor surface to the right of B is frictionless. The coefficient of kinetic friction between the surface to the left of B and the black is 0.25 . The spring has a force constant of $573 \mathrm{nt} / \mathrm{m}$, and it is compressed to a length 20 km shorter than
its nomal length. The distance from A to C is 1 m , and B is midway between A and C. If the block is suddenly released, what will be its speed when it goes past point C?
A. $2.55 \mathrm{~m} / \mathrm{sec}$
B. $\quad 3.00 \mathrm{~m} / \mathrm{sec}$
C. $5.12 \mathrm{~m} / \mathrm{sec}$
D. $3.16 \mathrm{~m} / \mathrm{sec}$
29. A constant horizontal force \vec{F}, of magnitude 120 nt , 18 used to move e 10 kg black up a plane inclined at 37° frow the horizontal. If the block starts from rest, and the coefficient of kinetic frictioo between the black and the plane is 0.200 , hobl far has the block travelent along the plane when its speed is 2,1 n/eec?
A. 3.1 m
B. 4.1 m
C. 5.7 m
D. 6.1 m
[aj CORRECT ANSWER: 10 nt
The work done is equal to the area of the triangle in the figure. The area of a triangla is given by (1/2) (base) $\%$ (height).

Thus,

$$
W=\frac{1}{2} \mathrm{~b}, \text { and } h=2 \mathrm{w} / \mathrm{b}
$$

Bat the height here is the desired F_{s} maximum. hence,

$$
F_{s}(\max)=\frac{2 W}{b}=\frac{2 \times 450}{90}=10 \mathrm{nt}
$$

(b] CORRECT ANENER: 1
B - The oniy force acting on the particle is that of gravity, directed along the negative y-axis. Since, however, the net vertiagl displacement of the ephere, at the point it hits the ground, is zero, the net work done by the force of gravity is xero and, therefore, $\Delta X=0$. Thus,

$$
x_{f}=K_{1}=(1 / 2) n v_{0}^{2}=(1 / 2) \times 2 \times(10)^{2}=100 \mathrm{j}
$$

(c) CORRECT AXSETEE: D

B - Given that

$$
F=p(a x+b)^{2}
$$

the work done is expressed by

$$
\begin{aligned}
W=\int_{x_{1}}^{x_{2}} v \cdot d t & =m \int_{x_{1}}^{x_{3}}(a x+b)^{2} d x \\
& =\int_{x_{1}}^{x_{3}}\left(a^{2} x^{2}+2 a b x+b^{2}\right) d x \\
& =\left.\operatorname{ma}\left(a^{2} \frac{x^{3}}{3}+2 a b \frac{x^{2}}{2}+b^{2} x\right)\right|_{x_{1}} ^{x_{2}}
\end{aligned}
$$

Eet $x_{1}-0$ and $x_{2}-3$, to obtain

$$
\mathrm{H}=78 \mathrm{~J}
$$

ruve or FAlSE? The solution of this problem assumes the applied force to be constant over the entire incerval from $x_{1}=0$ to $x_{2}=3$.
[a] CORRECT ANSWER: 128 m

We use the work-energy theorem to find the speed of the bullet when it comes out of the pole. Note that the force is opposite to the direction of motion.)

$$
-F s=\Delta K=\frac{1}{2} n v^{2}-\frac{1}{2} m v_{o}^{2}
$$

or

$$
\frac{1}{2} \pi v^{2}=\frac{1}{2} \pi v_{0}^{2}-F s=\frac{1}{2}\left(w v_{0}^{2}-2 F s\right)
$$

and

$$
\begin{equation*}
v=\sqrt{\frac{\left(m v_{0}^{2}-2 \mathrm{Fs}\right)}{\mathrm{m}}} \tag{1}
\end{equation*}
$$

The bullet coures out of the pole horizontally, so $\mathrm{w}_{\mathrm{oy}}=0$. Also the final $y=0$, so from

$$
y=y_{0}+v_{o y} t-\frac{\lambda}{2} g t^{2}
$$

we find the time it takes the bullet so hit the ground

$$
\begin{equation*}
s=\sqrt{\frac{2 y o}{g}} \tag{2}
\end{equation*}
$$

Finally, since shere is no acceleration in the x-direction,

$$
\begin{equation*}
x=v_{o x} t \tag{3}
\end{equation*}
$$

continued
In equation (3). $v_{\text {ox }}$ is the speed found in (1) and t is the time found in (2); thus.

$$
\begin{equation*}
x=\sqrt{\frac{\left(m v_{o}^{2}-2 F s\right)}{m}} \frac{2 y_{o}}{g} \tag{4}
\end{equation*}
$$

Substituting the given data in (4) we find

$$
\begin{aligned}
x & =\sqrt{\left(30 \times 10^{-3} \times(300)^{2}-2 \times 2500 \times 0.30\right](2 \times 2)}\left(30 \times 10^{-3}\right) 9.8 \\
& =\sqrt{\frac{(2700-1500) 4}{0.294}}=128 \mathrm{n}
\end{aligned}
$$

TRUE OR FAL5E? After passing through the pole. the trajectory of the bullet is parabolie.

a) CORRETT ANSWER: D

0 - The work done ty a force \vec{F} in moving a body through a displacenent dst has been defined as

$$
\begin{equation*}
d W=\overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~s}} \tag{1}
\end{equation*}
$$

Dividing both sides of (1) by the time differential dt we find

$$
\begin{equation*}
\frac{d W}{d t}=\vec{F} \cdot \frac{d \vec{A}}{d t}=\vec{F} \cdot \vec{v} \tag{2}
\end{equation*}
$$

But dW/dt is the rat? at which work is done by the force; i.e., the power dilivered by the force. Hence,

$$
\begin{equation*}
t=\vec{F}+\vec{v} \tag{3}
\end{equation*}
$$

In the present problem we want to find the power when the mass is at the equilibrium point. From the relation $F=-k\left(x-x_{0}\right)$ we see that at $x=x_{0}, F\left(x_{0}\right)=0$. Therefore, the apring delivers no power at the instant the mass n passes through the aid-point x_{0}.
[a] CORRECT ANSWER: 30°

The component of the applied force along the inclined plane, F_{s}, matt at least equal the component of the weight along the incline. We have

$$
F_{s}=m g \sin \theta
$$

and

$$
\begin{aligned}
W=\vec{F} \cdot \stackrel{\rightharpoonup}{S} & =F_{s} s \\
& =(\mathrm{mg} \text { sine }) \mathrm{s}
\end{aligned}
$$

so

$$
\begin{aligned}
\sin \theta & =\mathrm{w} / \mathrm{mgs} \\
\theta & =\sin ^{-1}(\mathrm{~W} / \text { mgs }) \\
& =\sin ^{-1}[720 /(3 \times 32 \times 15)] \\
& =30^{\circ}
\end{aligned}
$$

TRUE OR FALSE? The work required to move the block up the plane varies directly with the mass of the block.
(a] CORRECT ANSWER: B
B - A constant force produces a constant acceleration, Using the equation involving a, v, and s, with $v_{0}=0$. we get

$$
v^{2}=2 a s
$$

Or

$$
a=\frac{v^{2}}{2 s}
$$

The force is given by $F=m a ;$ thus $F=\mathrm{mv}^{2} / 2 \mathrm{~s}$. The work done by this furce is therafore

$$
W=\vec{F} \cdot \vec{s}=F s \cos 0^{\circ}=\frac{\operatorname{mv}^{2}}{2 s} s=\frac{m v^{2}}{2}
$$

(l) CORRECT ANSWER: $480 \mathrm{ft-1b}$

The component of the applied force along the inclined plane, F_{g}, must be equal and opposite to the component of the weight along the incline. Thus,

$$
\mathrm{F}_{3}=\mathrm{mg} \text { aine }
$$

and
$W=\vec{F} \cdot \vec{s}=F_{s}=(\operatorname{mg} \sin 6) s$
$=2$ alugs $\times 32 \frac{\mathrm{ft}^{2 e c}}{\mathrm{sec}^{2}} \times \frac{1}{2} \times 15 \mathrm{ft}$

- 480 ftwlb

We have used the fact that

1. $\operatorname{slug}= \pm \frac{1 b-\sec ^{2}}{f t}$

TRUE OR FALSE? The work done in moving the safe a distance of 15 ft along the plane is independent of the angle of the plane.

[a] CORRECT ANSWER: A

Figure 1

In Figure 1 we show all the forces acting on the block. along with the concinate system chose for chis problem. The forces involved are:
i) the applied horizontal force \vec{F},

1i) the block's weight mig,
1ii) the plane's reaction force \vec{N}. and
iv) the force of friction \vec{f} of magnicude $f=\mu N$.

Since the displacement is along the positive x-axis, only the x-componenty of tiese forcss will contribute, to the work done on the block. Therefore, the noraal reaction force \vec{N} will not contribute directly to the work done, being perpendicular to \vec{s}. It does contribute indirectiy, however, since the magnitude of the frictional fotce fis proportional to 令. The direction of f is, of course, always opposite to the motion.

The force ${ }^{N}$ is

$$
\vec{N}=-\mathbb{E} \vec{F}_{y}
$$

or written in scalar form.

$$
N=-(-F \sin \theta-n g \cos \theta)=F \sin \theta+m g \cos \theta
$$

SEGMEST

continued
So the magnitude of the force of Eriction becomes

$$
\begin{equation*}
f=p N \not p(\mathrm{~F} \operatorname{s.a\theta }+\mathrm{mg} \cos \theta) \tag{1}
\end{equation*}
$$

The total work done on the block is (see Figure 2)

$$
\begin{equation*}
W=\vec{F} \cdot \vec{s}=s \Sigma F_{x}=s[F \cos \theta-m g \sin \theta-\mu(F \sin \theta+m g \cos \theta)] \tag{2}
\end{equation*}
$$

Using the work-energy theorem $\Delta X * W$, we find

$$
\frac{1}{2} \operatorname{tav}^{2}=W
$$

or

$$
\begin{equation*}
s=\frac{1}{2} m v^{2} /[F \cos \theta-\pi g \sin \theta-\mu(F \sin \theta+m g \cos \theta)] \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
s & =\frac{\frac{1}{2}(10)(2.1)^{2}}{(120)(0.8)-(10)(9.8)(0.6)-(0.2)(120)(0.6)+(10)(9.8)(0.8)]} \\
& =3.1
\end{aligned}
$$

TRUE OR FAKSE? In this problem, the block comes to rest after traveling 3.0 o up the plane.
[8] CORRECT ANSWER: $3.6 \times 10^{5} \mathrm{ft}-1 \mathrm{~b}$
In using the expression for the kinetic energy

$$
K=\frac{1}{2} m v^{2}
$$

we must make sure that consiatent units are used for all the quantities involved. Thus, $m=3009 / 32$ slugs and $v=60 \mathrm{mi} / \mathrm{hr}=88 \mathrm{ft} / \mathrm{sec}$, so

$$
K=\frac{1}{2}\left(\frac{3000}{32}\right)(88)^{2}=3.63 \times 10^{5} \mathrm{ft}-1 b
$$

[a] CORRECT ANSWER: 3003
The work done by a variable force is given by

$$
W=\int_{5_{1}}^{s_{1}} \cdot \vec{F} \cdot d \vec{s}=\int_{s_{1}}^{s_{2}} \mathrm{~F}_{\mathrm{g}} \mathrm{~d} \mathrm{~s}
$$

From the graph we see that F_{g} depends linearly on $s\left(F_{g} * k s\right)$, with the slope k equal to $(40 \mathrm{nt}) 7(20 \mathrm{~m})=2 \mathrm{nt} / \mathrm{m}$. Hence.

$$
\begin{aligned}
W & =k \int_{s_{1}}^{s_{2}} s d s=\left.(1 / 2) k s^{2}\right|_{s_{1}} ^{s_{2}}=(1 / 2) k\left(s_{2}^{2}-s_{1}^{2}\right) \\
& =(1 / 2)(2)(400-100)=300 \mathrm{j}
\end{aligned}
$$

The work can also be computed "geometrically." The integral ffsda is equal to the area under the F_{s} versus a curve, between the specified s-linits. A look at the graph will sonvinci you that the area is indeed $300 \mathrm{nk}-\mathrm{m}=300 \mathrm{j}$.

[a] CORRECT ANSUER: $8 \mathrm{~m} / \mathrm{sec}$

The wotk done by the block to equal to the change in kinetic energy K of the block,
or

$$
\begin{aligned}
& N=\Delta K \\
& N=k_{E}-\mathbb{k}_{i}
\end{aligned}
$$

All the work on the block is done by the component of weight projected along the incline. Ftom the diagram, we have

$$
\begin{aligned}
W & =\mathrm{mg} \cdot \vec{s} \\
& =\text { mgs } \cos \left(\theta+90^{\circ}\right) \\
& =- \text { mgs } \sin \theta
\end{aligned}
$$

The work-energy theorem becones

$$
-m g s \sin A=\frac{l}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)
$$

or $\quad v_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}-2 \mathrm{gs} \sin \theta$

Using the given data, $v_{i} \Rightarrow 10 \mathrm{~m} / \mathrm{sec}, s_{\infty} 2.6 \mathrm{~m}$, and $9 \mathrm{~m} 45^{\circ}$, we find $v_{f}=8 \mathrm{~m} / \mathrm{sec}$.

TRUE OR FALSE? This block will come to ;est at the end of its upwatd journey after traveling a distance of 2.5 m th the plane.
[b] CORRECT ANSHER: C
C - The work-energy theoren states that the work done is equal to the change of the kinetic enetgy of the particle,

$$
\begin{equation*}
W=\Delta X=X_{f}-K_{f} \tag{1}
\end{equation*}
$$

From the given data,

$$
\begin{equation*}
\mathrm{K}_{1}=(1 / 2) \mathrm{mv}^{2} \tag{2}
\end{equation*}
$$

3ni

$$
\begin{equation*}
K_{f}=(1 / 2) m(2 v)^{2}=2 m v^{2} \tag{3}
\end{equation*}
$$

Substituting (2) and (3) into (1), we find

$$
W=2 m v^{2}-(1 / 2) m v^{2}=(3 / 2) m v^{2}
$$

[a] CORRECT ANSWER: A

Λ - The escalator must fubt overcome the gravitational force on the passengers (welght). If n is the number of passengers of average weight w, the total force that must be provided by the escalator is F -nw. The power delivered by the escalator in moving the passengers with a velocity $\stackrel{-1}{ }$ is

$$
\begin{aligned}
\rho=\vec{F} \cdot \vec{v} & =-n \vec{W} \cdot \vec{v}=-n \bar{w} \cos \left(90+37^{\circ}\right) \\
& =n \bar{W} v \sin \left(37^{\circ}\right)
\end{aligned}
$$

This power cannot be larger than
$10 \mathrm{hp} \times 550 \frac{\mathrm{ft}-1 \mathrm{lb} / \mathrm{sec}}{\mathrm{hp}}=5500 \mathrm{fE}-1 \mathrm{~b} / \mathrm{sec}$ Therefore, for maximum n. n $\bar{w} v \sin \left(37^{\circ}\right) * 5500$
or
$n=\frac{5500}{\text { सेv } \sin \left(37^{\circ}\right)}$

* 30.6

Hence, 30 people can ride the escalator. Nutice that 31 people are too many.

TRUE OR FALSE? In the solution above power consumed is independent of the angle of the escalator.
(b) CORRECT ANSWER: D

Circular motion provides an example of the dependence of the work dane on the angle between the applied force and direction of notion. The centripetal force is $\mathrm{mv}^{2} / \mathrm{r}$. and the total distance traveled during one revolution is s o $2 \pi r=\pi d$. At any moment. however, the force is directed along the radius toward the center, while the direction of motion is along the tangent to the circle at the point at which the particle is. Thus, the angle between \vec{F} and $d \vec{s}$ is 90°; and $\vec{F} \cdot \mathrm{~d}^{*}$. \Rightarrow Fis $\cos \left(90^{\circ}\right)=0$. So the work done by the centripetal force is zero.

TRJE OR FALSE? In uniform circular motion the work done by the centriw petal force is an unpredictable function of displacement.
(a) CORRECT ANSHER: $10 \mathrm{~m} / \mathrm{sec}$

The kimetic energy K of the projectile is given by

$$
k=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}\right)
$$

At the highest point in a trajectory, the vertical component of velocity vanishes.

$$
k=\frac{1}{2} \pi v_{x}^{2}
$$

the hoxizontal component of velocity remefns unchanged throughout the profectile's flight because there is no horizontal force. The initial speed. v. and v_{x} are relared by

$$
v_{x}=v \cos \theta
$$

so that

$$
K=\frac{1}{2} m(v \cos \theta)^{2}
$$

or

$$
\begin{aligned}
v & =\frac{1}{\cos \theta} \sqrt{\frac{2 k}{m}} \\
& =10 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

TRUE OR FALSE? Just before she profectile leaves the muzzle of the gin it has defintte vertical and horizontal components of velocity.

[b] CORRECY ANSWER: $100 \mathrm{ft}-\mathrm{lb}$

Since the displacenent and time are given, and $v_{0} \neq 0$, the conatant acceleration can be computed from

$$
s=\frac{1}{2} a t^{2} \quad \text { so } \quad a=\frac{2 \mathrm{~s}}{t^{2}}
$$

The force causing this acceleration is

$$
F * m a=\frac{2 m s}{t^{2}}
$$

Finally the work done by this force is given by

$$
W=F s=2 m \frac{s^{2}}{t^{2}}=2 \times \frac{16}{32} \times\left(\frac{100}{10}\right)^{2}=100 \mathrm{ft}-1 b
$$

[a] This solution is identical to that of question 10 , except for some mumerical changes. The solution is reproduced here for your conventence.

CORRECT ANSNER: B
B - The escalator must just overconte the gravitational force on the passengers (weight). If n is the number of passengers of average yeight, ${ }^{\text {w }}$, the total force that muft be provided by the escalator is $\vec{F}=-n$. ${ }^{*}$. The power delivered by the escalator in moving the passengers with a velocity $\stackrel{*}{ }$ is

$$
F{ }_{F}^{*}
$$

Hence, 30 people can ride the excalator. Notice that 31 people are too many.

IRUE OR FALSE? More people could have ridden the escalatot if \bar{W} had been smaller than 150 lb .
[b] CORRECT ANSWER: D
 applied force and $\overrightarrow{3}$ is the displacement. In this question $\vec{s}=\vec{y}$. Furthermore, in order to move the book vertically upward (without acceleration), a vertical force $\frac{\mathrm{f}}{\mathrm{f}} \mathrm{g}$ is required to overcome the force of "gravity" (weight). Hence, $\mathrm{F}_{\mathrm{y}}=\mathrm{rg}$ and

$$
W=\vec{F} \cdot \vec{s}=F_{y} y=\operatorname{rgy}
$$

$\Rightarrow \operatorname{ninv} \sin \left(37^{\circ}\right)$
This power cannot be larger than
$5 \mathrm{hp} \times 550 \frac{\mathrm{ft}-\mathrm{lb} / \mathrm{sec}}{\mathrm{hp}}=2250 \mathrm{ft}-\mathrm{lb} / \mathrm{sec}$
Therefore, for maximum n,
or
$n * \frac{2250}{\tilde{w} v \sin \left(37^{6}\right)}$
$=30.6$
[a] GORRECT ANSWCR: D

Figure 1

Figure 2

D - In Figute 1 we show all the forces acting on the block, along with the coordinste systen chosen for this groblem: The forces involved are:
i) the applied horizontal force \vec{F},
ii) the block's weight $t{ }^{1}$,

1ii) the plane's reaction force N, and
iv) the force of friction \vec{f} of magnitude $f=u N$.

Since the displacement is along the positive x-axis, only the x-compom nents of these forces will contribute, to the work done on the block. Therefore. the normal reaction force \mathbb{N} will not contribute directly to the work done, beftig perpendicular to \vec{s}. It does contribute indirectly, however, since the magnitude of the Erictional force is proportional to \vec{N}. The direction of f is. of course, always opposite to the motion.

The foree \mathfrak{k} is

$$
\overrightarrow{\mathrm{N}}=-\mathrm{E} \overrightarrow{\mathrm{~F}}_{\mathrm{y}}
$$

or witten in scalar form.

```
N=-{-F\operatorname{sin}0-ag\operatorname{cos}0)=F\operatorname{sin}0+mg\operatorname{cos}0
```

continued
So the magnitude of the force of friction becomes

$$
\begin{equation*}
f=\mu N=p(F \sin \theta+m g \cos \theta) \tag{1}
\end{equation*}
$$

The total work done on the block is (see Figure 2)

$$
\begin{equation*}
W=\vec{F} \cdot \vec{s}=s\left(\left\{F_{x}\right)=s[F \cos \theta-\operatorname{sg} \sin \theta-y(F \sin \theta+\pi g \cos \theta)]\right. \tag{2}
\end{equation*}
$$

Using the work wenergy theorer $\Delta x * W$, we find

$$
\frac{1}{2} \mathrm{mv}^{2} * \mathrm{~W}
$$

tr

$$
\begin{equation*}
v=\sqrt{\frac{2 N}{\omega}}=\sqrt{\frac{2 s}{\pi}[F \cos \theta-m g \sin \theta+\cdots(F+1 \pi \theta+m g \cos \theta)]} \tag{3}
\end{equation*}
$$

Substituting the given data in (3) we obtain
$v=\sqrt{\frac{2 \times 10}{10}((120)(0.8)-(10)(9.8)(0.6)-(0.2)[(120)(0.6)+(10)(9.8)(0.8)]\}}$

$$
=\sqrt{2(96-58.8-30.08)}=\sqrt{14.24}=3.76 \mathrm{~m} / \mathrm{sec}
$$

TRUE OR FALSE? With the axes chosen as illustrated, the ywcomponent of F does not directly contribute to the work done on the bloek.
[a] CORRECT ANSWER: 100 j
A: its highest altitude, the vertical component of the projectile's velocity is tomentarily zero. The horizontal componant of the velocity is constant, since there is no horizontal force acting on the par icie. Hence, the kinetic energy at the bighest altitude is given by

$$
K H \frac{1}{2} \pi v_{x}^{2}=\frac{1}{2} m\left(v_{c} \cos \theta\right)^{2}=\frac{1}{2} \times 2 \times(20 \times 0.5)^{2}=100 \ddagger
$$

TRUE OR FALSE? At the highest altitude, the projectile is accelerating uniforaly in the horizontal direction.
(a) CORRECT ANSWER: C

C - The wirk done is found from

$$
\int_{s_{1}}^{s_{2}} F_{s} d s=\int_{x_{1}}^{x_{2}} d x
$$

with $F=\lim _{k}\left(x-x_{0}\right)$. We have

$$
\begin{aligned}
W & =-k \int_{x_{1}}^{x_{2}}\left(x-x_{0}\right) d x-\left.k\left(\frac{x^{2}}{2}-x_{0} x\right)\right|_{x_{1}} ^{x_{2}} \\
& =-\frac{k}{2}\left(x_{2}{ }^{2}-2 x_{0} x_{2}-x_{1}{ }^{2}+2 x_{0} x_{1}\right)
\end{aligned}
$$

Substaturity the values of $x_{0}=0.15 \mathrm{~m}, x_{1}=0.10 \mathrm{~m}, x_{2}=0.25 \mathrm{~m}$, and $k=2000 n t / m$ above, we get

$$
W=-1000(625-750-100+300) \times 10^{-4} \times-7.5 j
$$

The negative sign means that work is done on the spring, not $\begin{gathered}\text { by } \\ \text { the }\end{gathered}$ spring. He can see this qualitatively. The spring is originally compressed 5 cm from equilibrium. It does work in moving the mass frow $x=10 \mathrm{~cm}$ to $x=x_{0}=15 \mathrm{~cm}$. From $x=15 \mathrm{~cm}$ to $x=x_{2}=25 \mathrm{~cm}$. hewever, the spring must be stretched, so work must be done on it.

TRUE OR FALSE T Throughout the displacemenc from $x=18 \mathrm{~cm}$ to $\mathrm{x}=23 \mathrm{~cm}$, the nature of the work done is identified by a negacive (\rightarrow sign.
[b] CORMECT ANSWER: 980 watts
The power delivered by a force can be uritcea as

$$
P=\vec{F} \cdot \vec{v}
$$

In the present problem, the magnitudes of the applied force and the
 have the same direction. Herce,

$$
P=P v=u \text { ugg }=(0.2)(100)(9.8)(5)=960 \text { watts }
$$

[a] CORFECT ANSWER: 5 cm
We use the work-energy theorem to find the speed of the ball when it comes out of the water. Note that the force is in the direction of motion.

$$
\begin{gathered}
W=\Delta K \\
\text { Fs }=\frac{1}{2} w v^{2}-\frac{1}{2}{m v_{0}}_{2}
\end{gathered}
$$

where \vec{F} is the magnitude of the average force and s is the distance traveled by the ball in water. Solving for the square of the final speed, we have

$$
v^{2}=\frac{\mathrm{B} \mathrm{w}_{0}^{2}+2 \overline{\mathrm{Fs}}}{\mathrm{~m}}
$$

The speed v is now the initial speed with which the ball leaves the surface of the water. The fifght of the ball through the air is described by

$$
v_{f}^{2}=v^{2}-2 g y
$$

At the fighest point, $v_{f}=0$, so

$$
\begin{aligned}
y=\frac{y^{2}}{2 g} & =\frac{z v_{0}{ }^{2}+2 \bar{g}_{s}}{2 m g}=\frac{\overline{\mathrm{Fs}}}{\mathrm{mg}} \text { where } \mathrm{v}_{0} \text { has been set equal to zero } \\
& =\frac{\left(490 \times 10^{-5}\right)(10)}{(0.1)(9.8)}=0.05 \mathrm{~m}=5 \mathrm{~cm}
\end{aligned}
$$

TRUE OR FALSE? In this solution, $v_{0} * O$ because the initial velocity of the tall is zero when it is released from the bottom of the barrel.
[b] CORRECT ANSWER: $10 \mathrm{~m} / \mathrm{sec}$
The work W done by the block is equal to the ch. -ge in the kinetic energy K of the block,

$$
W=\Delta \mathbf{K}
$$

or

$$
W=x_{f}-x_{1}
$$

contimued
In this case, we have work done by the component of weight projected along the
 incline. mg sin"

$$
\begin{aligned}
\pi & =n g \cdot s \\
& =m g s \cos * \\
& =n g s \sin \theta
\end{aligned}
$$

The work-energy theorem becomes

$$
\text { tags } \sin \hat{i}=\frac{1}{2} m\left(v_{\varepsilon}^{2}-v_{i}^{2}\right)
$$

or

$$
v_{f}^{2}=v_{i}^{2}+2 g s \sin \theta
$$

Fing the given data $y_{i}=8 \mathrm{~m} / \mathrm{sec}, \mathrm{s}=2.6 \mathrm{~m}$ and $\theta=45^{\circ}$. We find $v_{f}=30 \mathrm{~m} / \mathrm{sec}$.

TRUE OR FALSE? All other things equal, at increasingly larger values of $\vec{s}_{\text {, }}$ the greater will be v_{f}.
[a] CORRECT ANSUER: C
Gefven that

$$
F=\operatorname{ma}=m\left(\alpha+3 x^{2}\right)
$$

the work done is

$$
\begin{aligned}
& V=\int_{x_{i}}^{x_{2}} \vec{F} \cdot d \vec{s}=\pi \int_{x_{y}}^{x_{7}}\left(a+\Delta x^{2}\right) d x=\left.w\left[a x+\left(\frac{8}{3}\right) x^{3}\right]\right|_{x_{1}} ^{x_{2}} \\
&\left.=215 x+(15 / 3) x^{2}\right]\left.\right|_{0} ^{2}=100 y
\end{aligned}
$$

[a] CORRECT ANSWER: B

B - The change in the block's kinetic energy is equal to the net work done on the block. The spring applies a force on the block up to the point the spring reaches its normal (equilibrium) length. this variable force is equal to

$$
\begin{equation*}
y=-k\left(x-x_{0}\right) \tag{1}
\end{equation*}
$$

which is in the direction of the block's notion.
The work done by this force is

$$
\begin{equation*}
i_{1}=\frac{1}{2} k\left(x-x_{0}\right)^{2} \equiv \frac{1}{2} k s_{1}^{2} \tag{2}
\end{equation*}
$$

where $)_{\text {? }}$ is the change in the spring's length; namely,

$$
x-x_{0}=s_{1}=-20 c m=-0.2 n
$$

the minus sign indicating a negative change of length, that is, compresstrin. The work done thy the force of friction is negat five (work done agafnst friction' and is equal so

$$
\begin{equation*}
v_{2}=-\operatorname{mg} s_{2} \text {, with } s_{2}=\overline{A B}=50 \mathrm{~cm}=0.5 \mathrm{~m} . \tag{3}
\end{equation*}
$$

Thus, at point 8 the block's kinetic energy is given by

$$
\begin{equation*}
\frac{1}{2} m v^{2}=v_{1}+k_{z}=\frac{1}{2} k s_{1}^{2}-p m g s_{2} \tag{4}
\end{equation*}
$$

Now, since :o the right of B the surface is frictionless, the net force on the block there is zero, and the block will move with constant velocity. Therefore, the black's speed at point \mathbb{C} is found from equation (4) and is

$$
\begin{equation*}
\dot{v}=\sqrt{k_{m} s_{1}^{2}-24 g s_{2}} \tag{5}
\end{equation*}
$$

Substituting the gis en data in (5) we find

$$
\begin{aligned}
v & =\sqrt{\frac{573}{2}(0.2)^{2}-2(0.25)(9.8)(0.5)} \\
& =\sqrt{11.45-2.45}=3.00 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

(3] CORREC: ANSUER: 75,350. ft-13/sec or 137 hp
The power an he conputed from

$$
\begin{equation*}
P= \tag{1}
\end{equation*}
$$

The force must be such as to overcome the weight of the car; 1.e.,

$$
\begin{equation*}
\vec{F}=-\mathrm{m}_{\mathrm{g}} \tag{2}
\end{equation*}
$$

So,

$$
\begin{aligned}
p & =-m \mathrm{~g} \cdot \hat{v}=\operatorname{mgv} \cos (90+\theta) \\
& =-\operatorname{mgv}(-\sin \theta) \\
& =\operatorname{mgv} \sin \theta
\end{aligned}
$$

Equation (3) can also be derived by usint the fact that mg sing is the component of the weight alotg tha incline. the force provided ty the car ${ }^{\dagger}$ a engine mist ovarcome this component. The component of the weight normal to the incline (mg cose) is counteracted by the road's "reaction" on the car.

The given sqeed $1560 \mathrm{mi} / \mathrm{hr}=88 \mathrm{ft} / \mathrm{sec}$. Also, in order to convert from $\mathrm{ft}-1 \mathrm{~b} / \mathrm{se}$: to hp , we must divide (3) by 550 ($1 \mathrm{hp}=550 \mathrm{ft}-1 \mathrm{~b} / \mathrm{sec}$). jhus,

$$
p=\frac{(2500)(88)(0.342)}{55 i}=137 \mathrm{hp}
$$

[a] CORRECT ANSUER: 825 13
The work-energy theores can be used for solving this problen. From K * AK or Fs $*(1 / 2) \mathrm{my}^{2}$, we find

$$
\begin{equation*}
\overrightarrow{\mathrm{F}}=\frac{m v^{\overrightarrow{2}}}{2 s} \tag{1}
\end{equation*}
$$

where is the average force, s the distance over inich \bar{F} acts, and v is the lnitial velocity of the bullet. The quantities involved in equation (1) must be expressed in the appropriate units. We convert the bullet's weight into its mass

$$
\equiv \approx 1 \text { oz } \times \frac{1}{16} \frac{18}{62} \times \frac{1}{32} \frac{5148}{1 b}=\frac{1}{16 \times 32} \text { slug }
$$

Tre velocity $v=600 \mathrm{ml} / \mathrm{hr}=880 \mathrm{ft} / \mathrm{gec}$, and the penetration depth s $x 11$ inches $x 11 / 12$ \&t. thus.

$$
F=\frac{\frac{1}{16 \times 32} \times(880)^{2}}{2 \times 11 / 12}=\frac{(88)^{2} \times 12 \times 10^{2}}{16 \times 32 \times 2 \times 11}=825 \mathrm{lb}
$$

SEGMENT SEPARATOR

note

MLE KRETEN: MATERIAL APPLICABLE TO
THE FOLLOWINC SECNENT IS COKLALEED
IS THE PACKS BETWES THLS GOLORED
SHEET ANO THE SEXT.
\qquad Potential Energy and Conservative Forces

ogJECTIVE

To introduce the concept of potential energy and its place in conservative systers; to use these concepts in the solution of relevant problems.

Forential energy is the kind of energy that a body has by virtue of its position or cosfiguration. When a body is raised ce a highar level, it is able to do a certain amount of work when it falls back to its originad height; this is potential energy of "position." potential energy of configuration is illustrated by a stretched or compressed spring. Work must be done to change the configuration of the spring so that an equal arount of potential entergy is stored in the spring onder ideal conditions because it can do that amount of work in returning to its origital length.

In either case, potential energy can be uniquely determined only by reforring the change of position or the change of configuration to some particular reference which is arbitrarily assigned a value of zero. onty a change of potential energy is sigmificant. Once, however, a position is deternained to which a zero value of potential energy can be asisigned, we may speak of the potential energy of a body, When a mass is iffted to a table top, the energy may be measured relative to the flour. If we had referred the energy to the cellar or attic, the potential energy at floor level, or at table level, would then have been different.

In its broadest sease, a force is conservative if the work it does in moving ath object over any path back ku its starting point is zero. A secand important characteriscte of the action of a conservative force is that the work ft dees in moviag the object between two given points is independent of the pach over which the object has been moved. Conservative forces are intimately related to potential and kinetic energy. When a conservative forze does work on body, this wark s completely recoverable; indeed, this is the fundaraental aspect of conservative systems.

In this suction, you will be asked to
(a) recognize the differences between conservative and notl-consexvative forces;
(b) extend the work-energy theoren co situations involving conservative forces.

PROBLEMS

1. The work-energy theorem states that the work done by the resultant furca on a particle is cqual to the change in kinctic anergy of the particie, $I .=A K$. If the resultant force is conservatite, we also krifw that the total cnergy of the particle does not change, $\Delta X+\Delta J=0$. In this case, which of the following statements is correct?

The wotk done by the resultant conservative force is equal to
A. the :hange in the fotential enetgy of the particle, $W \infty$
B. the change in the total energy of the particie, $k=\Delta E$
C. the negative of the change in the total energy of the particle, $W=-\Delta E$
D. the negative of the change in the potential energy of the particle, $\mathrm{w}=-\mathrm{N}$
2. Which of the following describes the action of a conservative force?
A. A block of wood slides dovn an fnclined plane with uniform spoed.
B. A cork is pushed under water and then released to bob up to the surface.
C. A metear enters the atmosphere at high speed and succeeds fit reaching the ground without burning up.
D. A rock is thrown vertically upward from the surface of the moon and alloned to fall back down.
3. Leet the velocities of a paricle ar positions x_{a} and x be v_{o} and v, respectively. If the cotal energy E at $x_{0} f_{s}(1 / 2)_{R_{0}}{ }^{2}+u\left(r_{0}\right)$ and the particle 15 subjected to a conservative force, chen for the position x, the expression $(1 / 2)$ nv $^{2}+U(x)$ is the equivalent of
A. $E+W$
B. $E+20$
C. $E+\Delta K$
D. E
4.

Two particlea of equal mass are rel sed from top of an incline making an angle of 30° with the horizontal. Particle one falls straigbt down and particle two sijdes cown the incline, both reaching the same zero Level. Neglecting friction, find the ratio of the work done by the gravitarional force on particle one to the work done by the gravitathonal force on particle two.
A. 0.5
B. 2
C. 1
D. 0.866

INFORMATION PANEL
Conservation of Energy

OBJECT'TE
To apply the principle of the conservation of energy to the solution of numerical preblems in which it is directiy involved.

The priseiple (ar law) of conservation of energy states that in any isolated bystem, regardless of the changes that may occur within the system, the tetil energy of the systear remaing constant. Constancy implies that energy may tof transferred from one part of the system to another, bat that is cannot be created or destroyed. We know of no energy generators, oniy energy converters. The destruction of en, gy appears to be impossible. When energy seans to disappear, we always find that it has been merely transferred elseri where and can always be accounted for.
continued
In systems where onls conoemative forees act, the conservation principle may be written as:

$$
k+U \approx \operatorname{constant}
$$

In which $K=k i n e t i c$ energy, $u *$ potential energy, and the constant is called the total mechanical energy of the sysrem. Any loss of kinetic energy that occurs results in a gatn of an equal amount of potentizl energy, and vice versa so that

$$
\begin{aligned}
-\Delta U & =\Delta K \\
\text { thus } \Delta K+\Delta U & =0
\end{aligned}
$$

When one or more nonconservative forces are present, the total mechanical energy E of the system is nat constant, but changes by an amount equal to the work of the nonconservative force on the system.

The problerts associated with this section are all based on the conservation of mechanical energy, hence fnvolve only cons rvacive forces, You may assume for these that anconservatos forces are absent or that their effects may be ignored. You will be expected to be able to determine
(a) the maximum height of ascent of a vertically profecked body with the help of the conservation principle;
(b) the neight to wh'ch a roller coaster with a given initial speed will rise as it climbs ar faclines
(c) determine the speed of a given pendulum bob as it passes chrough the lowest point of its swing.
5. A roller coaster moves at point A with speed v_{0}. At point B, the coaster moves with speed (1/2) v_{0}. Assuming no frictional losses, what is the height of point B above point A ?

A. $3 v_{o}^{2} / 8 g$
B. $7 \mathrm{v}_{\mathrm{o}}{ }^{2} / 8 \mathrm{~g}$
C. $v_{0}^{2} / 4 g$
D. $5 v_{0}^{2} / 6 \mathrm{~g}$
6. A ball of mass 0.5 kg is thrown from ground level vertically upward with a speed of $20 \mathrm{~m} / \mathrm{sec}$, Use conservation of energy to find the maximum heights h, attained by the ball.
7. A pendulum bob is released from a height h. 30 cm with a speed $v_{0}=2$ inf sec. What is the speed of the bob winter it passes through the lowest point of its swing?

8. A particle of mass $: n$ starts from rest at point A and slides down to pofnt C without leaving the track, Neglecting friction, find the ratio of the speed of the particle at point B to its speed at point C. if the height of B above t is h and the height of A above C is $2 h$.

INFORMATION PANEL Potential Energy When the Resultant Fozce Varies

OBJECTIVE

To solve potentisal energy problems in which the force that producet the change in potenilal energy varies with the configuration of the rivitem.

In one dimension, say, along the x-axis, the change in potential energy SU is related to the component of force along this axis $F(x)$ by the equation:

$$
\Delta U=\int_{x_{+}}^{x} \mathbb{V}(x) d x
$$

This relationship may also be written in the form

$$
F(\dot{x})=-\frac{d}{d x} V(x)
$$

continued

The second form is easily verified by substituting it in the first equation; an identity is obtafted. Clearly, we can slso write this last expression as:

$$
d U(x)=-F(x) d x
$$

In many situations, the force F varies with its position along the closen axis, that is, F is a function of x. When you encounter a problem of this type, all tnat is requited is that you set up the general equation you need and substitute the given ldentity for $F(x)$. For example, sijppos? that you are told that the force is related to its position along the x-axis by:

$$
y=k x^{3}
$$

In which k is a constant. $x o$ find the change in the potential energy of a particle to whiciz this force is applied, from some reference pusition x_{0} to a new position x, you would write:

$$
d u=-\left(k x^{3}\right) d x
$$

and then integrate between the positions x and x_{3}.
Generalized expressions for forces that vazy in two and three dirensi uns are alsodertived in your text. In this section of your work, however, you will be dealing with ore-dimenstonal problems only. You are expected to be able to solve problems in which you are to find
(a) the potential energ) of a parcicie located st sone arbitrary point on the axis being considered, given the way in which the force varies witt position on thes axis;
(b) che x-component of a force that taries in two dianensions, given the relationship between this force and the consequent potential emergy it produces.
9. For a force

$$
F \approx-k y
$$

where k is a constant, and for the choice $U * 0$ at $y=$:o, what is the potential eneagy $U(y)$ of a particle located at an arbitrary po at y ?
10. The potencial energy corresponding to a certain two-dimensional force is

$$
v(x, y)=\frac{1}{3} k\left(x^{3}+y^{3}\right)
$$

where k is a constant. The x-component of the corresponding force is
A. $-k\left(x^{2}+y^{2}\right)$
B. $k x^{2}$
C. $-k x^{2}$
D. $k\left(x^{2}+y^{2}\right)$
11. A particle is subject to a force $F(y)$ - -mg. If the potential energy of the particie is zero at the origin, $0(0)=0$. What is the potential energy $\mathrm{U}(\mathrm{y})$ of the particle as a function of y ?
12. For a force

$$
F(x)=-\frac{k}{x^{z}}
$$

where k is a constant and for the choice of $U * 0$ at $x=\infty$, what ia the potential energy $U(x)$ of a particle located at an arbitrary point x ?
A. $-\frac{k}{x}$
B. $\frac{k}{x^{2}}$
C. $\frac{k}{x}$
D. kx^{2}

INFORYATION PANEL

OBUECTIVE
To apply conservation principles to the solution of apring problems in which kinetic energy and potential energy are involved in ideal (frictionless) systems.

The problems found in this section require that you recall and apply the following funclathental relationships:
contimued
i. In atl oscillatiog spring system isolated from external forces, the total energy remains constant and is always intsantineously equal to the sum of the kinetic energy and potential energy of the system at that instant, or:

$$
E=X+U
$$

2. The force required to compress or stretch a spring is proportional to the coreression or extension, i.e.,

$$
\tilde{F}_{a p p}=\mathrm{k} x .
$$

where k is defined as heing the spring constant. The potential energy of the spring is therefore

$$
y=\frac{1}{2} k x^{2}
$$

In which k is the spring constant and x is the displacement of the end of the spring fram its zero reference position.
3. When a spring is compressed or stretched as a result of the transfer of energy to it from a moving mass maving a velocity v, the conservation principle may be written:

$$
E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}
$$

where ε is the constant, total energy of the mass-spring system.
In this section, you will be asked to solve problems in which you must derermine:
(a) the height from which a mass meast be dropped onto a spring in order to produce a given compression;
(b) tha kinetic energy of a mass on a vibrating spting when the total enargy and potential ettergy at a givea instant are known;
(c) the maximum displacement of mass on a vibrating spriag given the spring constatat and the total energy of the systea;
(d) the maximum compression of a given spring after beirg struck by e given mass moving at a given speed.
13. A ball of mass it is dropped from rest onto a spring with spring constant k. The maximum compression of tie spring is x. Fith the height above the (uncompressed) spring from which the ball was dropped, assuaing no friction at the time of inpact.

```
A. (kx2/2mg})=
B. (kx>/2mg) + x
C. (k\mp@subsup{x}{}{2}/mg)-x
D. }\mp@subsup{\textrm{kx}}{}{2}/\textrm{mg
```

17. A particle of mass 3 as released from the top of an incline as shown in the figure below. At the bottom, it conpresses a spring by in amount indicatcd as x. The spring constant is k. Find the heignt from which the particle is released. Neglect function.

A. $\frac{2 \mathrm{mg}}{\mathrm{kx}^{2}}$
B. $\frac{k x^{2}}{2 m g}$
C. $\frac{\mathrm{kx}^{2}}{\mathrm{ag}}$
D. $\frac{\mathrm{mg}}{\mathrm{kx}} \mathrm{m}^{2}$

INFORMATYON PANEL
A Composite Problem Using Conservation of Energy

OBJECTIVE
To solve a problem in which the principle of conservation of energy is combined with centripetal force.

In the system illustraced in the accompanying diagrana, a block is placed on a frictionless inclined track and released so that it slides down the track into at inside loop. If it is not placed high enough
 above the reference surface, it will start the loop but fall off before it reaches the top. If it is to successfully negotiate the loop and continue on its *ay, there is a definite minimum feight at which it must be placed before it is released. Let's talk about this problem with a view to itelping you get started on it.

You are glven the rass or weight of the block and the radius of the loop. When the block passes the bottom of the loop fust as it comes of the inclite. it is moving at sone specific speed, but the speed must decrease as it begins to cling the far end of the loop against gravity. The loop

cont inued

is rigid and presses inward on the block, providing the centripetal force needed to force it into circular motion. The lowest velocity to which the block will be reduced is the velocity at the very top of the loop. What physical situation tust obtain at this point fit the block is not to leave the track, falling doktward? Think about this tefore continufng.

If the velocity of the block at the top of the loop is less than a certain critical value, fis weight will be greater than the centripetal fore required to keep it moving in a loop of the given radius. In this case, it will simply leave the track and fall back to the surface. Thus, if it is aot to lose contace with the track, its velocity must be greater than this critical walue. Stated otherwise, tts velocity mast be such that the eentripetai force needed to make it move in a cirele of that paritieutar radius io equal to or greater than tite weth of the blook. This is all the clue you should need to get started. Set up the expression for centripetal force in terms of mass and velocity, then equate this with the weight expressed in terms of mass and gravitational acceleration. look for a way to get the kinetic energy of the block into the picture after you have done this.
18.

Compute the minimum height h from which a 10 -lb block can be releaged, in order that it will go around the loop without losing contact with the track. Astume afictionless rack.
(a) CORRECT ANSWER: 0.78 5

The system it conservative and the principle of conservation of energy holds:

$$
E=K+U
$$

where total energy E is a constant. Substituting the data 1.28 j . $\mathrm{K}+0.50 \mathrm{j}$, we obtain $\mathrm{K}-0.78 \mathrm{f}$.
[b] CORRECT ANSWER: $3.14 \mathrm{~m} / \mathrm{sec}$

If we take the lowest point as the zerompotentsal energy point, the bob's total energy at release is $E_{i}=(1 / 2)$ mu $_{0}^{2}+$ moh. This nust be equal to its total energy when it passes through the lowest point of Its suing, $E_{f}=(1 / 2)^{\prime} w^{2}$. Equating E_{f} and E_{f} and solving ficir v, we obtain

$$
\frac{1}{2} \pi v^{2}=\frac{1}{2} \pi v_{o}^{2}+m g h
$$

ot

$$
\begin{aligned}
v & =\sqrt{v_{o}^{2}+2 p h} \\
& =\sqrt{(2)^{2}+2(9.8)(0.3)}
\end{aligned}
$$

- $3.14 \mathrm{~m} / \mathrm{sec}$

Notice that this is the result when the pendulun bot is initially moving either clockuise or counterclockwise.
[c] CORRECT ANSWEK: C

The gravitational force is conservative, therefore, the work done is equal to negative of the change in potential energy. In other words,

$$
\Delta W=-\Delta U
$$

In this problem the ΔU is the same for both the particles, therefore, the ratio of the work done is one.

TRUE OR FALSE? To arrive at the sfafement $W=-A B$, one must apyly both the principle of conservation of energy ath the workmenergy theorew.
(a) CORRECT ANSNER: A

Initially, the kinetic energy of the ball is zero. If we define our zero of gravitational potential energy to be the "ground" level in the actompanying diagram. the potential energy of the ball is mgl:, where h is the unknown hefght above the spring. The uncompressed spring has zero porential energy. Therefore, the total intital energy is

$$
\begin{equation*}
E_{i}=U_{i}+K_{i}=\operatorname{mgh}+0=\mathrm{mgh} \tag{1}
\end{equation*}
$$

In che final configuration, the ball is momentarily at rest (zero kinetic emergy). The potential energy due to gravity is mg(-x) because the ball is below the "ground" level. The sprlag now contributes a potential energy of ($1 / 2$) kx^{2} due to its compression. Wo have

$$
\begin{align*}
\mathbf{E}_{\mathrm{f}} & =\mathrm{U}_{\mathrm{f}}+\mathrm{K}_{\mathrm{f}}\left[\mathrm{mg}(-\mathrm{x})+(1 / 2) k x^{2}\right]+0 \\
& =\sim_{\mathrm{mgx}}+(1 / 2) \mathrm{kx}^{2} \tag{2}
\end{align*}
$$

Conservation of energy, $\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}}$, gives

$$
\text { mgh }=-m g x+(3 / 2) k x^{2}
$$

or

$$
h=\frac{8 x^{2}}{2 n g}-x
$$

TRUE OR FALSE? As it turas out, the height frow which the ball is dropped is directl, proportional to the compression of the apring.
[a] Cosrect NSWER: B
Applying the law of conservation of energy:

$$
\begin{equation*}
\frac{1}{2} m y^{2}=m g h \tag{1}
\end{equation*}
$$

where v ia the gpeed of the particle on the flat part of the track. Similarly, the energy relationshif for the particle and spring system is:

$$
\begin{equation*}
\frac{1}{2} m v^{2} \Rightarrow \frac{1}{2} k x^{2} \tag{2}
\end{equation*}
$$

Combining (1) and (2) and solving for h yields

$$
h \frac{k x^{2}}{2 \mathrm{~g}}
$$

TKUE OR FALSE? After the ball passes the bottora of the factine and wille it moves along the ilst part of the crack, its acceleration is zero.
[b] CORRECT ANSWER: D
The force of gravity is a conservative force. Since the moon has no atmosphere, friction is not operative during the rock's flight. Whan the roek returns to the height frow which it was thrown, it will have its initial spead and the kinetic energy will also have its initial value.

In genteral we look for dissipative forces (usually frictional forces), which will convert some, or all, of the mechanical energy into thermal energy (heat), Iight, of sound whith, for practical purposes, is not recoverable. Such forces are non-conservative.

When a rock is thrown near the surface of the tarth, the pracess is not conservative unless air reafatance is neglected. Although the gravitational force is conservative, the force due to fitiction is dissipative and the resultant force is therefore dissipative. Answers A, B, and G involue finctional forces and are therefore not dascriptive of conservative forces.
[a] CORRECT ANSWER: C
Waing the principle of conservation of mechanical energy, the speed at polnts $B\left(v_{B}\right)$ and the speed at point $C\left(v_{C}\right)$ maly be computed f:ont

$$
\begin{equation*}
\frac{1}{2} m v^{2} * u g h \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} m v c^{2}=m g(2 h) \tag{2}
\end{equation*}
$$

Therefore the ratio

$$
\frac{v_{B}}{v_{C}}=\sqrt{\frac{1}{2}}
$$

TRUE OR FALSE? At point B, the binetic energy is smaller than the total energy of the particle at that instant.
[b] CORRECT ANSWER: D
The forces are conservative, so the total energy at x is equal to the total energy at X_{0}. Hence,

$$
\text { Total energy at } x_{0}=\frac{1}{2} \operatorname{my}_{0}{ }^{7}+U\left(x_{p}\right)=E
$$

so that
total energy at $x=\frac{1}{2} m v^{2}+U(x)=m$
Hence, the totel energy at $x \mathrm{~m}$. Clearly, answert $A, 8, C$ all have an incorrect additive on the xight side of the equation.
[c] CORRECT ANSWER: D
When conservative forces aze involved, the total energy is conserved. Thua, $\Delta E=\Delta X+\Delta V=0$, and $\Delta X *-\Delta V$. Then, using the work-energy cheorem, we get,

$$
W m \Delta K m \sim \Delta U
$$

TRUE OR FALSE? The statement $\Delta K+山 O=0$ is the equivaient of the etatement $K+U=$ constant for a congervative aysters.

【a〕 CORRECT ANSWER: 20.4 \%
We choose our sero level of potential energy at the position from which the ball was thrown. Irs total energy at the instant it leaves the sround consists entirely of its initial kinetic energy, ($1 / 2$) mwo ${ }^{2}$. similarly, at the instant the basl attanns its maximum height lits total energy is potential. mgh. Using conservation of energy we obtain

$$
m g h=\frac{1}{2} \mathrm{mv}_{0}^{2}
$$

which gives

$$
h=\frac{v_{0}^{2}}{2 g}=\frac{(20)^{2}}{2 \times 9.8}=\frac{400}{19.6}=20.4 \mathrm{~m}
$$

In genaral, for a single particle in a grayitational field, equating initial energy to fingl anargy yiedis

$$
3 \mathrm{mg}_{0}+\frac{1}{2} m v_{0}^{2}=\mathrm{mgy}+\frac{1}{2} m v^{2}
$$

frow which

$$
v^{2}=\psi_{0}^{2}-2 g\left(y-y_{0}\right)
$$

This equation should be familiar to you from kinematics.
[b] CORRECT ANSWER: 0.8 m
St either end of the suing ($x * x_{\text {ran }}$) the gpeed of che mase is momentarily zero, so the tetal energy of the mass-apring syatem (1.28 i) is potential. Thus,

$$
U=\frac{1}{2} k\left(x_{\max } \quad x_{\theta}\right)^{2}=E=1.28 j
$$

and the distance from the equilibrium position

$$
s=x_{\text {tiax }}-x_{0}=\sqrt{\frac{2 \mathrm{E}}{\mathrm{E}}}=\sqrt{\frac{2(1,28)}{4}}=\sqrt{0.64}=0.8 \mathrm{~m}
$$

(al CORRECT ANSHEX: 25 ft
At the top of the loop the block mast have a welacity such that the centripstal force required to make it move in a circle is at least as great as che wefght of the block. It cans of course. be greater, since the track can previde all the adsitional force required. We must, then, hate

$$
\frac{\mathrm{zy}^{2}}{\mathrm{~K}} \geqslant \mathrm{mg}
$$

or

$$
\begin{equation*}
\frac{\mathrm{my}^{2}}{2} \geq \frac{\text { 悬良 }}{2} \tag{1}
\end{equation*}
$$

Sut frem conservation of energy (no friction)

$$
\begin{equation*}
\frac{d v^{2}}{2}=a g(h-2 R) \tag{2}
\end{equation*}
$$

Combining (1) and (2) we obtain

$$
\operatorname{mg}(h-2 R) \geq \frac{\text { mgr }}{2}
$$

and
$h \geq 2 R+\frac{R}{2}=\frac{5 R}{2}$
$0 r$
h 225 ft

TRUE OR FALSET When the block is at the highest point of the loop, the centripetal force must be graster or equal to the weight of the block.
[a] CORRECT ANSWER: 3
The initial state consists of a moving block with kinetic entery (1/2)wis ${ }^{2}$ and an sucompressed spring with zero potential energy.

final

The total energy initially is

$$
E_{i}=\frac{1}{2} m v^{2}
$$

The Einal confisuracion consists of the bloek momentarily at rest, and the spring compressed an unknown distance x. We have

$$
\mathrm{E}_{\mathrm{F}}=\frac{1}{2} \mathrm{k} x^{2}
$$

Now since enargy is conserved, $\mathrm{E}_{\mathrm{i}} * \mathrm{E}_{\mathrm{f}}$, which gives

$$
x^{2}=\frac{m}{k} v^{2} \quad \text { or } \quad x=\sqrt{\frac{m i}{k}} v
$$

[b] CORECT ANSHER: A
Kechanical energy is conserved. Taking the initial potential energy to be 2\%ro. we have $\mathrm{E}=(1 / 2)$ tr 0^{2}. Equatiog this to the total final energy, kinetic plus potential, we obtain

$$
\frac{5}{2} m v_{0}^{2}=\frac{1}{2} n\left(\frac{Y_{0}}{2}\right)^{2}+m g h
$$

The resulting expression for h is

$$
h=\frac{(1 / 2) v_{0}^{2}-(1 / 8) v_{0}^{2}}{8}=\frac{3 v_{0}^{2}}{8_{g}}
$$

TRUE OR ZAISB? The initial total enargy of the rollar coaster is party kinetic and partly potential.
[a] CORRECT ANSWER: $u(y)=$ mgy
In one dimemsion we have

$$
F(y)=-\frac{d U(y)}{d y}
$$

or

$$
\begin{equation*}
d u=-F(y) d y \tag{I}
\end{equation*}
$$

When integrating ecquation (1) remember that

$$
\int_{\mathrm{D}(0)}^{\mathrm{U}(\mathrm{y})} \mathrm{dU}-\int_{0}^{y} \mathrm{~F}(\mathrm{y}) \mathrm{dy}-\int_{0}^{y} \mathrm{mg} d y
$$

or

$$
U(y)-U(0)=-m g y \left\lvert\, \begin{aligned}
& y \\
& 0
\end{aligned} \quad m g y\right.
$$

Since $U(0)=0$

$$
U(y)=\operatorname{mg} y
$$

[b] CORRECT ANSWER: C
The force in two dimensions is given by

$$
\begin{equation*}
\vec{E}=-\frac{\partial U}{\partial x} \vec{y}-\frac{\partial U}{\partial y} \vec{j} \tag{1}
\end{equation*}
$$

In the computation of $\partial u / \partial x, y$ is treated as though it vere a constant. We have

$$
F_{x}=-\frac{\partial}{\partial x}\left|\frac{1}{3} k\left(x^{3}+y^{3}\right)\right|
$$

but since $\partial x^{3} / \partial x=d\left(x^{3}\right) / d x=3 x^{2}$
and $\partial\left(y^{3}\right) / \partial x=0$
then $F_{x}=-\frac{1}{3} k\left(3 x^{2}\right) m-k x^{2}$, the answer to the problem.
[a] CORRECT ANSWER: $\frac{1}{2} k\left(y^{2}-y_{o}{ }^{2}\right)$

From

$$
F_{y}--\frac{\partial u}{\partial y}=-\frac{d u(y)}{d y}
$$

we find

$$
d U=-F d y
$$

Integrating between the points y_{0} and $y_{\text {, }}$

$$
\int_{u\left(y_{0}\right)}^{v(y)} d v=-\int_{y_{0}}^{y} d y
$$

Using the given data $F=-k y$ and $V\left(y_{0}\right)=0$, we find

$$
U(y)=\left.\frac{k y^{2}}{2}\right|_{y_{0}} ^{y}=\frac{1}{2} k\left(y^{2}-y_{0}^{2}\right)
$$

TRUE OR FALSE? AcCOrding to our established symbolism, the force F in this problem is confined to one dimension.
[b] CORRECT ANSWER: C
From

$$
F(x)=-\frac{\partial U}{\partial x}=-\frac{d U}{d x}
$$

We find

$$
d I t-F(x) d x=\frac{k}{x^{2}} d x
$$

Integrating from the poiats $x=\infty$ to $x \times$

$$
\begin{gathered}
\int_{U(\infty)}^{U(x)} d U=\int_{t=0}^{x} \frac{k}{x^{2}} d x \\
U(x)=\frac{k}{x}
\end{gathered}
$$

Note that $U(\infty)=0$
THUE OR FALSE? The potential energy of the particle as x approache* ∞ is less than k but greater than zero.

$m=\sqrt{4}=1=2$ note

ALL WRITTEN MATERIAL APpLICABLE TO
THE FOLLOWING SEGMENT IS CONTAINED
IN THE PACES BETWEEN THIS COLORED
SHEET AND THE NEXT.

OBJECTIVE

To recognize and apply the fact that the position of the center of wass of a system of particles is independent of the coordinates used to describe its location,

Your assigned reading will ultimately carry you to the stateaent:
The center of mass of a system of partioles depenie only on the masses of the partictea and the position of the particies relative to ons another.

One important ixplication of this statement is that the orientation or position of the axes does not affect the position of the center of mass relative to the particles. Consider
 the three paxticies in the upper diam gram at the left. These particles have relative masses of 1,2 , and 3 respectively as indicated. Uning the accepted method for deternining the coordinates of the center of mass, we can write:

$$
\begin{aligned}
& \bar{x}_{\mathrm{cm}}=\frac{(1)(1)+(2)(7)+(3)(9)}{1+2+3}=7 \\
& \bar{y}_{\mathrm{cm}}=\frac{(1)(2)+(2)(5)+(3)(4)}{1+2+3}=4
\end{aligned}
$$

In the lower diagram, we have redrawn the system with a new set of axes so that the particle of relative mass 1 is now at the origin. Once again writing the coordinates of the center of masa, we have

$$
\begin{aligned}
& \ddot{x}_{c m}^{\prime}=\frac{(1)(0)+(2)(6)+(3)(8)}{1+2+3}=0 \\
& \tilde{y}_{c m}^{\prime}=\frac{(1)(0)+(2)(3)+(3)(2)}{1+2+3}=2
\end{aligned}
$$

contimued

Compare the two diagrams and observe that the center of mass in each one Is identically located relative to the syatem of paricieles. Despite the fact that the particle of mass l is souarely on the origin and so has cpordinates of (0,0), it still enters into the calculation of the center of mass. Note that it does contribute to the denominator of the fraction although it drops out of the numerator in both the evaluations.

To hande the problems in this group, it will be necessary for you to
(a) locate the center of mass of three particles, two of which lie on the x-axis;
(o) urite an expression for the x-coordinate of the center of mass of two particles in general form;
(c) detemine the coorditnates of the center of mass af an asymetrical body in two dimensions.

PROBREPS

1. The coordinates of the center of mass of the system shown in the figure are

A. $x=a ; y=1.33 \mathrm{a}$
B. $x=0.25 a ; y=a$
C. $x=a: y=0.75 a$
D. $x=0.75 a ; y=a$
2. Consider the center of mass of a syster of two particles mi and mo lying along the $x \rightarrow a x i s$ at x_{1} and x_{2}, respectively. write an expreastion for $x_{\text {cm }}$, the x-coordinate of the center of mass of the two particles.
3. What are the coofdinates of the center of sass of the systen shown in the figure?

A. $x=2 a ; y=2$
B. $x=0.5 \mathrm{a} ; \quad y * 1.1 \mathrm{a}$
C. $x=a ; y=a$
D. $x=0.33 \mathrm{a} ; \mathrm{y}$ *a
4. A plece of $3 / 4$ inch piywood has been cut into the shape shown. If uniform mass density and thickness are assumed for this plece of wood, then the center of mass is located at the point
A. $(0.9,1.0)$
H. (1.3. 1.3)
C. $(0.9,1.3)$
D. (1.0, 1.3)
5. A plece of $1 / 2$ inch plywood has been cut into the shape shown. If unfform mass densticy and thickness are assumed for this plece of wood, what are the coordinates of its center of mass?

OBJECTIVE

To correctly analyze problems involving the novement of the center of mass of system of parcicles subjected to internal and or external forces.

Sinee the basic definition of center of mass comaits us co thinking of it as a point where all the mass of a body may be considered to be concentrated, ic follows from Newron's second law that

The eentew of mass of a syatem of particles is a point which moves as though the total mass of the oystem is conoentrated at that point and is subject to a foroe equat to the resultant of all external forces on the bysien.
contimued
Aurnesc a perfecty symmetrical hollou ball containing a compressed wrins is made up of two segments ficted rogether. Suppose further t.int the ball is dropped vertically downard from the top of a bridge a's: that the spring is timed to decompress after the bali has fallen part of the way dom, blowing the segments apart. The force exerted by the spring on the segments is an intermal one; it tast be accompanted by a reaction force which makes the net force on the segrent systom zero. Ali internat forces have this charactaristic, hence the empliasis on extemal forces in the italicized statement above. Thus, internal forces cannot affect tise motion of the center of mass of any systen of moving particles. In this example, the two fragnents of the ball would follow trajectories such that the center of mass of the twoftagment system would continue to fall straight down as though the ball fiad mot btom apart at att. Note that no mention was made in the description about the relative masses of the twa fragmenta. The apparent discegard of the center of mass for internal forces applies equally well to a pair of fragments having a mass ratio of, say, 10 to 1 as it does to a pair of fragments of equal mass. The only external force acting on the system-mhether intact or segmented-is the downward force of gravitation so that the center of mass will have an acceleration equal to g fust as the whole ball wolld have had if it had not come apart.

It is left as a thought exercise for you to vizualize the difference in fiight pattern of two equalmass fragtents as compared with two fragnents of unequal mass.

All of the problems in this set require that you be able to recognize the differences in effect of internal and external forces acting on a system of particles.
6. Two masses on a table are connected by a rubber band. A constant force of 50 nt is applied to the right mass as shown. The coefficient of kinetic friction between each mass and the table is $\mu * 0.2$. The left mass is 10 kg and the right mass is 15 kg . What is the acceleration of the center of mass when both masses are moving to the right?

7. A weightilfter's barbell is accidentally released froan the cargo hatch of woving airplane. One of the weights separates from the bar in midatr. Which statement best describes the resulting motion?
A. The center of mass of the whole barbell system will follow the same trafectory as the one it would follow if the weights did not separate.
B. The motion of the piaces in completely randoa.
C. The pleces follow a path such that theif center of mass falls to the ground along a straight vertical line.
D. The motion cannot be describad because there is insufficient data.
8. A shell explodes in mid-trajectory near the surface of the Earth. Neglecting friction, tame the goonetric curve which describes the trajectory that the center of atass of the exploded shell will follow while both fraguents are in Elight.
9.
$m_{1}=4 k_{g}$

For the 时stem of masses and forces shoth above, the acceleration of the center of mass is
A. $22.5 \mathrm{~g} / \mathrm{sec}^{2}$ towards left
B. $37.5 \mathrm{~m} / \mathrm{sec}^{2}$ towards right
C. $5 \mathrm{~m} / \mathrm{sec}^{2}$ towards left
D. $15 \mathrm{~m} / \mathrm{sec}^{2}$ towards right
10. Threc masses on a table are connected by springa as shown in the figure below. A constant force of 50 nt is applied to the extreme right mass as shown. The coeffictert of kinetic friction between each mass and the tabie is $m=0.2$. The masses of the blocks are $2 \mathrm{~kg}, 5 \mathrm{k}$ g and 10 kg as show th the diagram. What is the acceleration of center of mass when all the wasses are boving to the right?

(a) CORRECT ANSWER: Parabole

In this sicuacion, the net external foree on all the particles is equal to the weight of the whole system. Fherefore, the center of mass of the fragmented shell woves as though it wore the eenter of mass of the intact shell. Its trajectory will be parabolic because the internal explosive force cannot affect the motion of the center of mass.
[b] CORRECT ANSWER: $4 \mathrm{~cm} / \mathrm{sec}^{2}$
This problem looks wuch more difficult than it is. The acceleration of the center of mass is just the net external force divided by the total mass. The total mass is 25 kg . The net exterval farce is the applied external force of 50 nt 3ninus the frictional force exerted by the table. The tota! frictional force is

$$
f \neq \mu N=\mu m g \neq \mu \operatorname{mg}\left(m_{1}+m_{2}\right)=0.2 \times 9.8 \times 25=43 \mathrm{nt}
$$

Hence, the net external force $1 \mathrm{~s} 50-49=1 \mathrm{nt}$, form which we obtain an acceleration

$$
a=\frac{1}{25} \frac{\mathrm{mg}}{\mathrm{~kg}}=0.04 \mathrm{~m} / \mathrm{sec}^{2}=4 \mathrm{~cm} / \mathrm{sec}^{2}
$$

The answer is independent of the speed of either mass (both moving to the right). If either mass were stetionary or moving in the opposite direction. the frictional forces would be different from those calculated above. For moving blocks, we have to take into account thas the frictional force fa always direcked opposite to the velocity. If a black is stationary, we must use u_{s} instead of μ_{k} in our calculations.

Note that the forces exerted by the rubber band on the masses are internal forces. They must be taken 1nto account when frae-body diagratas are drawn for the two masses. but they do not affect the motion of the center of mass.

TROE OR FALSE? The rubber band may be replaced by a massless string without changing the acceleration of the eenter of mass.
[a] CORXECT ANSWER: B
By defintion

$$
x_{c m}=\frac{\sum_{i} m_{1} x_{i}}{\sum_{i} m_{i}} \quad \text { and } \quad y_{c m}=\frac{\sum_{i} m_{i} y_{i} y_{i}}{\sum_{i} m_{i}}
$$

Theretore

$$
\begin{aligned}
& x_{e m}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{2} x_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(2)(0)+(3)(0)+(5)(a)}{2+3+5}=0.5 a \\
& y_{c a}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(2)(0)+(3)(2 a)+(5)(a)}{2+3+5}=1.1 a
\end{aligned}
$$

 it must be included in $\Sigma \mathrm{m}_{\mathrm{f}}$.

TRUE OR FALSE? If m_{1} is made 1 kg instead of 2 kg , it may then be matted from the sutumations.
[b] CCKREC: ANSWER: A.
Before the pieces separated there were internal forces exerted by the pieces on asch other. After the separation there is no interaction between the separate pleces. However, as far as Newton's aecond law is concerned, the situat \ddagger on has not changed. The forces before reparation were internal, action-reaction forces and by Newton's third law cheir resultant was zeto. Therefore, the net external force on the whole system has not changed with the separationt
(a) CORRECT ANSWER: $(0.0,1.0)$

Divide the given piece of wood into two pleces: one square of aras $9 \mathrm{ft}^{2}$ and another recrangle of area $4.5 \mathrm{ft}^{2}$. The centers of mass of these pieces axe lacated at the points $\varepsilon_{1} *(0,0)$ far the square and $c_{2} *(0,3)$ for the reczangle, Since the piywood in of mnifora thickness, the masses of these two pleces are $\pi_{1} 90$ and $\omega_{2}=4.50$ where is the assumed mass per $E t^{2}$ and ${ }^{a_{1}}$ and m_{2} are the masses of the square and the rectangle, respectively. Tne cotal mass of the given piece is $\mathrm{M}=13.5 \mathrm{p}$. The proshen now has been reduced to finding tha center of mass of two particles of nass m_{1} and m_{2} located at c_{1} and c_{2} respectively.

$$
\begin{aligned}
& x_{\mathrm{cm}}=\frac{(9 p \times 0.0+4.5 p \times 0.0)}{13.50}=0.0 \mathrm{ft} \\
& y_{\mathrm{ten}}=\frac{(9 p \times 0.0+4.5 p \times 3)}{13.50}=1.0 \mathrm{ft}
\end{aligned}
$$

TRUE OR FALSE? In a problen of this type, the pesition of the center of mass can be described only by giving at least threc coordinates.
(b) CORRECT ANSWR: $\left(m_{1} x_{1}+m_{2} x_{2}\right) /\left(m_{1}+m_{2}\right)$

The massmeighted mean of the positions of n particles is the ceater of mass of the syaten. The x-coordinate of the center of mass $x_{c m}$ is given by

$$
x_{c w}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}
$$

Thus, for the two particles in this question

$$
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

(a) CORNET ANSWEK: D

By deflいition,

So,

$$
\begin{aligned}
& x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(2)(0)+(2)(a)+(4)(a)}{2+2+4}=0.75 \mathrm{a} \\
& y_{c m}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(2)(0)+(2)(0)+(4)(2 a)}{8}=2
\end{aligned}
$$

Notice that, although m_{1} doea not contribute to $\Sigma m_{i} \vec{x}_{i}$ (since $\overrightarrow{v_{2}} * 0$), it must be inciuded in $E m_{i}$.

TRUE OR FALSE? One of the $2-\mathrm{kg}$ masses has a y-coordinate equal so A.
[b] COARECT ANSWER: $0.98 \mathrm{~m} / \mathrm{sec}^{2}$
The acceleration of tio conter of mass for the net extexal force divided by the cotal mass. The total mass $i s 17 \mathrm{~kg}$. The aet external force fs the applied external force of 50 nt ainus the frictional force exerted by the table. The total frictional force is

$$
\begin{aligned}
F=\mu N & =\mu g\left(m_{1}+m_{2}+m_{3}\right) \\
& =0.2 \times 9.8 \mathrm{~m} / \mathrm{sec}^{2} \times 17 \mathrm{~kg} \\
& =33.32 \mathrm{nt}
\end{aligned}
$$

Therefore, the acceleration is

$$
a_{c m}=\frac{50 n t-33.32 \mathrm{nt}}{17 \mathrm{~kg}} * 0.98 \mathrm{~m} / \mathrm{sec}^{2}
$$

TRDE OR FALSE? In this problem, the friction due to air resistance has been ignored.

【a] CORRECT ANSWEA: C
The center of mass of system soves in the same way that a single particle of equal mass subject to the sase external force would move. The resultant external force is $F=30 \mathrm{nt}$ to the left and the total wass is at $+\mathrm{m}_{2}=6 \mathrm{~kg}$. Therefore, the accelexation of the center of mass is
(b) CORRECT ANSWER:C

We shall present two ways of solving this probleat. Dne way is to divide the given piece of wood into two squares of area $1 \not \mathrm{tc}^{2}$ and $4 \mathrm{Et}^{2}$, respectively. The centers of mass of these square pieces are located at the points $C_{1}=(0.5,2.5)$ and $C_{2}=(1,1)$. Since the plywood is of uniform density and thickness, the masses of these two square pieces are respectively $m_{1}=1 p$ and $m_{2}=4 p$, where p is the assumed mass-per-unit-area. The total mass of the given piece is $M=50$. The problem now has been reduced to finding the center of mass of two particles of mass n_{1} and m_{2} located at C_{1} and \mathcal{C}_{2}, respectively.

$$
x_{\mathrm{cm}}=\frac{1}{50}(\rho \times 0.5+40 \times 1)=\frac{0.5+4}{5}=0.9 \mathrm{ft}
$$

and

$$
y_{c \mathrm{~cm}}=\frac{1}{5 \rho}(\rho \times 2.5+4 \rho \times 1)-\frac{2.5+4}{5}=1.3 \mathrm{ft}
$$

continued

Another way to do this oroblem is to view this board as a continuous

object and use the equivalent integral expressions for lacating the center of mass. Thus,
$x_{c \mid l}=\frac{1}{M} \int x d m=\frac{\rho}{M} \int x d A=\frac{\rho}{M} \int x y d x$
The value of y is:
$y=3$ for $0 \leq x \leq 1$, and
$y \propto 2$ for $1 \leq x \leq 2$
Therefore,

$$
\begin{aligned}
x_{c \mathrm{cII}} & =\frac{0}{M}\left[3 \int_{0}^{1} x d x+2 \int_{1}^{2} x d x\right]=\frac{p}{5 a}\left[\left.\frac{3}{2}\left(x^{2}\right)\right|_{0} ^{1}+\left.\frac{2}{2}\left(x^{2}\right)\right|_{1} ^{2}\right] \\
& =\frac{1}{5}[1.5 \times(1-0)+(4-1)]=\frac{1.5+3}{5}=0.9 \mathrm{ft}
\end{aligned}
$$

In a aimilar fashion

$$
y_{\operatorname{cm}}=\frac{1}{M} \int y d m=\frac{\rho}{M} \int y x d y
$$

with:

$$
\begin{aligned}
& x=2 \text { for } 0 \leq y \leq 2 \\
& x=1 \text { for } 2 \leq y \leq 3
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
y_{c \mu} & =\frac{p}{5 g}\left[2 \int_{0}^{2} y d y+\int_{2}^{3} y d y\right]=\frac{1}{5}\left[\left.\frac{2}{2}\left(y^{2}\right)\right|_{0} ^{2}+\left.\frac{1}{2}\left(y^{2}\right)\right|_{2} ^{3}\right] \\
& =\frac{1}{5}[(4-0)+0.5(9-4)]=\frac{4+2.5}{5}-1.3 \mathrm{ft}
\end{aligned}
$$

The latter method is, of course, more tedious. If, however, the piece of wood could not be divided into simple symaetrical parts (consider a semin circle for example), the integral method would be the only one that could be used.

TRUE OR FALSE? The position of C_{1} and C_{2} in each square of wood in the first solution may be determined by symuetry considerations.

note

ALL WRITTEN MATERIAL APFLICABLE TO THE FOLLOWING SEGMENT IS CONTAINED IN THE PAGES BETWEEN THIS COLORED SHEET AND THE NEXT.

INFORMATION PANEL
The Momentum of A Particle

objective

To state and interpret the definition of momenturn to solve descriptive and numerical problems involving the womentum of particles with constant pass.

Although the woxd "momentum" appeared in the izterature of classical physics subsequent to Newton's statertent of his laws of motion, it is evident from his writings that he recognized the product of mass and velocity as an important physical entiky. In his stakement of the second law, he refers to what we now tall momentum as the "ouantify of motion" of a bodv. Since the word "quantity" is broad in meaning, the phrase "muantity of motion" is vague and unsarisfying,

Let's try co clarify its signiffeance with the help of a simble example.
A steel black rests on a horizoneal wood plank with its center of mass directly sboye point A. An exper" inenter, for reasons known only to himself, wishes to have the block moved to position B by permitting some orber object moving roward the block from the left to collide with it. He has avallable to him only two things he can use: a hammer with a very massive head and a number of different cartridges together with the rifle that can fire then. He decides to strike the block with the hamer and, after a number of trials, find the speed of impaot required with that perticular hamer mabs to successfully move the block of steel from A to 8 . In the second part of his experiment, he tries various bullet. sizes and speeds until he finds one combtnation, say a .22 caliber slug with a definitemuzzle velocity, which produces exactly the same motion of the block when allowed to strike it horizontally from the left. He now concludes that tha hamer and the bullet had the same quantity of motion because they both produced the same motional change in the steel block. Thus, despite the crudity of the experiment and the possible hidden variables thet may be present, he has explicitly defined qุuantity of motion in terms of the effect it has on another obiect.

continued

It is clear that both speed and mass must enter into a fudgment of the quantity of motton possessed by the moving body. From the preceding example, it can be shown that quantity of motion, and the product of mass and velocity are equivalent. Using p to represent quantity of motion or monertim:

$$
P_{\text {hamer }}=N \quad \text { and } \quad \text { Pollet }=\mathrm{mV}
$$

in which we have used upper and lower case letters to symbolize iarge and small quamtities, respectively.

Thus, momentum is an entity comprising a rass term and velocizy term in the form of a product. Two moving bodies (i.e., a rassive hammer and a bullet of small mass) can be given the same momentom despite the mass disparity by giving them the correct velocities.

Stace mass is a scalar and velocity is a vector quantity, the product is a vector, hence the definition of momentim should be uritten:

$$
\overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{o}}=\overrightarrow{\mathrm{v}}
$$

In the British system, the unit for momentum is the slug-ft/sec. In the rexs systat it is the $\mathrm{kg}-\mathrm{m} / \mathrm{sec}$. In problem work, caution in unit conversions must ba exercised to be sure that the dimensions of momentum are properiy expressed.

All of the statements regarifng the momentum of a particle apply equally well to real bodies when all the mass of the body is considered to be concentrated at the center of mass.

When solving the problens in this set, you wlll be asked to
(a) detemine the moxnentur of an objuct with given mass. In this problew, you will want to find the velocity of the body by applying the given data in the law of conservation of energy;
(b) solve simple momentuti problem involving unit conversions;
(c) determiate momentum by first finding the velocity of a body from a knowledge of its kingtic energy.

PROBLEIS

1. A 2-ks block sities along the frictionless track shown in the figure. If the block's speed at
 point A is $10 \mathrm{~m} / \mathrm{sec}$, what is the momentum in $\mathrm{kg}-\mathrm{m} / \mathrm{sec}$ of the block at point B?
2. A $3200-16$ automoblle is heading north at a speed of $50 \mathrm{Et} / \mathrm{sec}$. Its momentum is a vector directed north with a magnitude of
A. $160,000 \mathrm{lb}-\mathrm{ft} / \mathrm{sec}$
B. 160.000 slug-ft/sec
C. $5.000 \mathrm{slugmf} / \mathrm{sec}$
D. 5,000 1b-ft/sec
3. A 2-kg block slides with constant velocity down an inclined plane. The kinetic energy of the block is 16 foules. What is the magaitude of the block's monentum in $\mathrm{kg}-\mathrm{m} / \mathrm{sec}$?
4. A particle of mass on ${ }^{2} 2 \mathrm{~kg}$ slides dom a track to enter an foside loop of raditis $R=50 \mathrm{~cm}$ shown in the Efgure below. sithout losing contact with the track at any time, it starts Erom reat at point $A_{\text {, }}$ What is its monentum at point B. Neglect friction.

INFORMATION PANEL

OBJECTIVE

To extend mpaentum zoncepts to the solution of probleass invoiving syatens of particles.

A careful analysis of the behavior of a system of particles shows that
the total momentum of a sustem of particles may be found by multiplying the total nasss of the sustem by the velocity of the center of mase of the syctem.

$$
\stackrel{\text { or }}{\vec{p}=\overrightarrow{v e m}_{c m}}
$$

In which $\vec{P}=$ the total momeatum of the system,
M - the total mass of the system,
$\vec{v}_{\text {cu }}$ * the velocity of the center of mass.
This problear section involves:
(a) a deiermination of the velocfty of the center of amss of a sypten given the momentum of the system;
(b) finding the resultant mowentum of a pair of particles by the method of vector eddition;
(c) a determination of the direction of the net momentum of a given syatem of partieles using vector methods.
5. Two particies of mass 2 kg and 3 kg respectively, are moving with a speed of $10 \mathrm{~m} / \mathrm{sec}$ due east. A third particie of mass 2 kg is moving with a speed of $25 \mathrm{~m} / \mathrm{sec}$ dua north. Jetermine the velocity of the center of mass, ta , of the system of three particies.
A. $10.1 \mathrm{~m} / \mathrm{sec}$ at $45^{\circ} \mathrm{N}$ of E
8. $20.2 \mathrm{~m} / \mathrm{sec}$ at $37^{\circ} \mathrm{N}$ of E
C. $10.1 \mathrm{~m} / \mathrm{sec}$ at $37^{\circ} \mathrm{N}$ of E
D. $20.2 \mathrm{~m} / \mathrm{sec}$ et $45^{\circ} \mathrm{N}$ of E
6. Two bodies in a system have masses 8 kg and 12 kg and are moving with velocitfas $10 \mathrm{~m} / \mathrm{sec}$ at 60° north of east and $5 \mathrm{~m} / \mathrm{sec}$ at 30° south of east, respectively. The magnitude of momentum of the system is
A. $100 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
B. $140 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
C. $20 \mathrm{~kg}-\mathrm{t} / \mathrm{sec}$
D. $70 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
7. A 2-kg particle moves due north at a speed of $1 \mathrm{~m} / \mathrm{sec}$. A second particle of mass 10 kg moves due east at a speed of $2 \mathrm{~m} / \mathrm{sec}$. What is the dfrection of the total momentum of the system?
A. 18° north of east.
B. 12° north of east
C. 8° north of east
D. 6° north of east
8. A system of parcicles with masses of 8 kg and 12 kg has a cotal momentum of $100 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$ at 23° north of east. Determine the volocity of the center of mass of the system.
A. $100 \mathrm{~m} / \mathrm{sec} ;$ at. 23° north of esst
B. $140 \mathrm{~m} / \mathrm{sec}$;
C. $20 \mathrm{~m} / \mathrm{sec} ;$
D. $\quad 5 \mathrm{~m} / \mathrm{sec} ;$

at due north

at 53° north of east
at 23° north of east
9. Two particles of mass $m_{1} * 2 \mathrm{~kg}$ and $\mathrm{m}_{2} * 3 \mathrm{~kg}$ axe moving with velocities of $10 \mathrm{n} / \mathrm{sec}$ due enst and $20 \mathrm{~m} / \mathrm{sec}$ due vest. respectively. Detemane the velocity of the center of mass. $\vec{v}_{c m}$ of the system.
A. $8 \mathrm{~m} / \mathrm{sec}$; due west
3. $16 \mathrm{~m} / \mathrm{sec}$; due east
C. $16 \mathrm{~m} / \mathrm{gec}$; due west
D. $8 \mathrm{~m} / \mathrm{sec} ;$ due north

EWFORYATION PANEL
The Second Law in Terms of Momentum

OBJECTIVE

To utilize Newton's second law expressed in momentum terms in interpreting certain physical sifuations and solving problems related to these situations.

Emphasis has been placed previously on the constraint that wass must be constant if the second law in the form

$$
F \otimes 2 a
$$

fs to be valid. In a nuaber of cases, the mass of the systom continagly varies so that this equation can no longer be applied. For example, as a chemfically propelied rocket moves, if burns fuel continuously so that its mass correspondingly decreases with time. Such problems are most easfly handlad by applying momentum considerations and, for this reason, it is important for you to be able to apply the second law in momentua terms with facility.

Newton's expression of the second law in Latin, when translated freely in modern terminology reads

The rate at whioh the momentum of a body charuges is proportional to the resultant forse acting on the body and takes place in the direotion of the stmaight lime in whioh the fores aets.

$$
\overrightarrow{\mathrm{pr}} \cdot \overrightarrow{\mathrm{~d}} \overrightarrow{\mathrm{p}} / \mathrm{dt}
$$

continued
If the mass is constant, the accelexarion form of the second law is valid bince

$$
\vec{F} \Rightarrow \mathrm{~d} \overrightarrow{\mathrm{p}} / \mathrm{dt}=\mathrm{d}(\mathrm{nu}) / \mathrm{d} \hat{\mathrm{t}} \Rightarrow \overrightarrow{\mathrm{v} v} / \mathrm{d} \mathrm{t}=\overrightarrow{\mathrm{t}} \cdot \vec{i}
$$

You will find these formulations of the second law felpful in artacking the problems in this section.
10. The total mass of a systera $1 s 3 \mathrm{~kg}$ and the magnitude of the systsm's momentum is changing at the rate of $15 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}^{2}$. What is the megnitude of the net external force exerted on the systan?
11. The total mass of a system is 100 gm , and the magniture of the syaten's monentum is changing at the rate of $1000 \mathrm{gm}-\mathrm{cm} / \mathrm{sec}^{2}$. The magnitude of the acceleration of the center of mass of the system is
A. $1000 \mathrm{~cm} / \mathrm{sec}^{2}$
B. $\quad 10 \mathrm{~cm} / \mathrm{sec}^{2}$
C. $i 00,000 \mathrm{~cm} / \mathrm{sec}^{2}$
D. $98,000 \mathrm{~cm} / \mathrm{sec}^{2}$
12. The cotal mass of a systen is 15 kg and the magnitude of the acceleration of its center of mass is $10 \mathrm{~m} / \mathrm{sec}^{2}$. What is the rate of change of the system's momentum?

OBJECTIVE

To apply the principle of conservation of monentum to the solution of cypical problems in witich this principle is found.

In the previous section of this segment of your work, you made use of Newton's second law in mormentur terms, that is

$$
\overrightarrow{\mathrm{F}}=\mathrm{d} \stackrel{\rightharpoonup}{\mathrm{p}} / \mathrm{d} \mathrm{t}
$$

In which \vec{F} * the resuitant force acting on the system, and $\overrightarrow{d p} / d t$ is the rate of change of monentua.

If follows directly from this that if the resultant force on the sybtem is zero, chen the rate of change of momentum of the system must also be zero, which in turn indicates that the momentum mast remain constant.

If $d \vec{P} / d t=0$, then $\vec{P}=$ constant.
In verbal form, this conclusion may be stated as follows:
In any system of intspacting partioles, the total vector monentwry remains oonstomt unless the sustem is aeted on by an extermal net force.

Thfs statament impiles that, atthough the momenta of individual particlea may change from one moment to the next, their vectar sum remains the same as long as no resultant force is appifed.

Since monentum is a vector quantity, you must expect to use vector trethods in sumang up the mamenta of partfele gysteme, or in sesoiving a given particle momentum into componants. The problems in this set enkail your recognition of the fact that when the net externet force is zero, momentum is conserved.
13. An B-tct, open-top freight eat is coastiag at a speed of $5 \mathrm{ft} / \mathrm{sec}$ ajong a Erictionless horizontal track. It suddenly begins to rain hard, the raindrops falling vertically with respect to ground. Assuming the car to be deep enough, so that the water does not spateer over the top of the car, what is the speed of the cat after ic thas collecred 4.5 cons of water?
34. A midishipman dives from the stenn of a stationary zowbsat. His nass 1870 kg and that of the rowboat 140 kg . The horizontai compoment of his yelocity when his feet leave the boat is $3 \mathrm{~m} / \mathrm{sec}$ relacive to Fhe water. What is the speed of the boat immediately after the dive?
15. A block of wood of mass $M=0.8 \mathrm{~kg}$ is suspended by a cord of negligible mass. A buylet of mass $\mathrm{f}=4 \mathrm{gm}$ is fired horizontally at the block with a muzzle velocity of $400 \mathrm{~m} / \mathrm{sec}$. The bullet remains erobedded in the block. What is the speed with which the wood block (with bullet embedded) is set into motion?
16. Assume a rocket has an initial weight of 3000 tons and a weight of 2784 tons after the fuel is completely burnech. Fuel is consumed at a rate of $2840 \mathrm{lb} / \mathrm{sec}$. After what time intervai in seconds does the rocket attain its maximan velocity?
17. Let \vec{v} be the velocity of a rocket (tass a) relative to ground and the velocity of the exhasst gases relative ta the rocket. Newton's second law then becomes

$$
\vec{E}_{\mathrm{ext}}=\frac{\overrightarrow{\mathrm{p}}}{d t}=\mathrm{m} \frac{\vec{d}}{d t}=\vec{d} \frac{d p}{d t}
$$

To ulich of the follouing does this equation reduce if the rocket is befag held stationary on a test pad by bolts, which exert force F_{b} on the rocket?
A. $\stackrel{*}{m}-\overrightarrow{E_{b}}=-\stackrel{+u}{d i d}$
7. $\vec{F}_{b}=-\vec{d} \frac{d t}{d t}$
C. $\quad \overrightarrow{a g}+\vec{F}_{b}=+\underset{U}{*} \frac{d m}{d t}$
D. $\quad \vec{g}=-\vec{t} \frac{d m}{d t}$
18. Integrating the rocket equation given in problan 17 yields

$$
\vec{v}=\vec{v}_{0}+\vec{u} \ln \left[\frac{m_{0}}{m}\right]+\vec{g} t
$$

For the rocket and data given in probien i6, determine the maxinum velocity of the rocket if the exhanst velocity of the gases reiative to the rocket is 55,000 wisec and the racket started from rest.
19. Tris masets are tied togetina with compressed spring between the tro as shown. The spring is not attached to elther mass. The system +ides on a frictionless table with a velocity \vec{v}. At some point the string is cut and the masses fily apart aiong the ofigiaal inge of wotion, The velocitles of nass m_{3} and m_{2} after release are \vec{v}_{1} and \vec{v}_{2}, respectively. What was the impulse imparted to mass mis?

\dagger
A. $m_{2}\left(\vec{v}_{2}-\vec{\nabla}_{1}\right)$
B. $m_{1}\left(\vec{v}_{2}-\vec{v}_{2}\right)$
c. $m_{2}\left\langle\hat{V}_{2}-\vec{v}\right\rangle$
D. $a_{2}\left(\vec{v}_{1}-\vec{v}\right)$
20. For' the syefem in proble 19, wat is the tupuise frparted to mi?
A. $-u_{3}\left(\vec{v}_{2}-\vec{v}\right)$
B. $-\mathrm{m}_{2}\left(\overrightarrow{\mathrm{~V}}_{2}-\overrightarrow{\mathrm{v}}\right)$
C. $\mathrm{ma}_{2}\left(\vec{v}-\vec{v}_{1}\right)$
D. $k_{t}\left(\vec{v}_{2}-\vec{v}\right)$
21. Far the systen in problem 19, what is the tamentum of tha canter of mass of the syatem after the string has been cut and the passes have attalned their final velocitleg?
A. $m_{2}\left(\vec{v}_{2}-\vec{v}\right)$
B. $m_{1}\left(\vec{v}_{i}=\vec{v}\right)$
c. $\left\{n_{1}+n_{2}\right\} \frac{\vec{v}_{1}+\vec{v}_{2}}{2}$
D. $\left(m_{1}+m_{2}\right) \vec{v}$
[a] CORRECT ANSWER: $2 \sqrt{2} \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
Since non consexvative (frietional) forces are absent, the total energy of the block is conserved. If the potential energy is taken to be zero at point A. We have

$$
\begin{equation*}
K_{A}=K_{B}+\text { mgh } \tag{1}
\end{equation*}
$$

with the subscripts A and B referring to points A and B, respectively. Since

$$
K=\frac{\underline{m v^{2}}}{2}
$$

(1) becomes

$$
\frac{m v_{A}^{2}}{2}=\frac{\operatorname{mv}_{B}^{2}}{2}+\operatorname{mgh}^{2}
$$

Solving for vi, we hove

$$
v_{g}=\sqrt{v_{A}^{2}-2 g h}
$$

and the mamentum P_{B} at point B is given by

$$
\begin{aligned}
\mathrm{P}_{\mathrm{B}} * \mathrm{mv}_{\mathrm{B}} & =2 \sqrt{\mathrm{v}_{\mathrm{A}}^{2}-2 \mathrm{gh}} \\
& =2 \sqrt{100-98}=2 \sqrt{2} \mathrm{~kg}-\mathrm{m} / \mathrm{sec}
\end{aligned}
$$

TRIIE OR EALSE? The momentum of the block is independent of its position along the incline.
[b] CORRECT ANSWER: 15 at
Newton't second law of motion can be expressed as

$$
\vec{F}=\frac{\vec{d}}{d t}
$$

This shows that the force exerted on a body is equal to the thme rate of change of its mosentum. Hence, the magnitude of the force exerted of the given systera is $15 \mathrm{kgmm} / \mathrm{sec}^{2}=15 \mathrm{nt}$.

TRUE OR EALSE? In this problem. $d \vec{p} / \mathrm{dt}$ is equal to $15 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}^{2}$.
[2] CORRECT ANSWER: 1
The tocal momentum \vec{p} of a system of particles is equal to the product of the total mass M of the system and the velocizy of the center of mass,

$$
\overrightarrow{\mathrm{p}}=\mathrm{m}_{\mathrm{Cu}}
$$

Solving for $\vec{v}_{c m}$, we obtain

$$
\overrightarrow{\mathrm{v}}_{\mathrm{cm}}=\frac{\hat{\mu}}{\mathrm{M}}=\frac{100 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}}{(8+12)-\mathrm{kg}}\left\{23^{\circ} \mathrm{N} \text { of } \mathrm{E}\right)=3 / \mathrm{sec}\left(23^{\circ} \mathrm{N} \text { of } \mathrm{E}\right\rangle
$$

[b] CORRECT ANSWER: $150 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}^{2}$
Newton's second law of motion can be expressed as

$$
\begin{equation*}
\vec{F}=\frac{d \vec{p}}{d t} \quad \vec{F}=\text { net external force } \tag{1}
\end{equation*}
$$

This shows that the external force exerted on a system is equal to the t tme rate of change of its momentim. However, the net external force exerted on a system is also given by

$$
\begin{equation*}
\vec{F}=\mathrm{Ma}_{\mathrm{c}=}^{+} \tag{2}
\end{equation*}
$$

Where M is the total mass of the system and a_{cm} is the acceleration of its center of mass.

Equating equations (1) and (2) ytelds

$$
\frac{d p}{d t} m \overrightarrow{M a}_{\mathrm{cm}}=\text { the magnitude of the rate of change of momentum }
$$

Substituting numerical data, we obtain

$$
\frac{d p}{d t}=35 \mathrm{~kg} \times 10 \mathrm{n} / \mathrm{sec}^{2}=150 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}^{2}
$$

TRUE OR FALSE? The rate of change of the momentum of a dystan on which a net force acts is numerically equal to the rate of change of this foree.
[a] CORREGT ANSWER: $1.99 \mathrm{~m} / \mathrm{sec}$
If v is the speed of the bullet and V the speed of the block with the bullet embedded in it, then by the conservation of momentum, we have

$$
\begin{equation*}
m v=(m+M) v \tag{1}
\end{equation*}
$$

Therefore, the required speed V is

$$
\begin{equation*}
v=\frac{m}{m+M} v \tag{2}
\end{equation*}
$$

Substitution of numerical values in equation (2) yields

$$
\begin{aligned}
\mathrm{V} & =\frac{4 \times 10^{-3} \mathrm{~kg}}{0.804 \mathrm{~kg}} \times 400 \mathrm{~m} / \mathrm{sec} \\
& =1.99 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

TRUE OR FALSE? The magnitude of the force of gravity acting on the block and bullet is an important consideration in this solution.
(b) CORRECT AMSWER: $3.2 \mathrm{Et} / \mathrm{sec}$

There are no external forces in the horizontal diraction aeting on the car-water system. Therefore, momentum is conserved. Thus,

$$
m_{1} v_{i}=m_{f} v_{f}
$$

and

$$
v_{f}=\frac{m_{i}}{m_{f}} v_{i}=\frac{m_{i} g}{m_{f} g} v_{i}=\frac{8 \text { tons }}{12.5 \text { cous }} \times 5 \mathrm{ft} / \mathrm{sec}=3.2 \mathrm{ft} / \mathrm{sec}
$$

Note that, since the mass (or weight) of the system is involved in a ratio, no conversion to slugs (ib) is necessary.

TRUE OR FALSE? This problem could have been solved correctly by converting the wefight of the car and the weight of the collected water to pounds before substituting the numbers.
[a] CORRECT ANSWER: C
The magnitude of the momentum is equal to the mass of the automobile times its speed. Since $w *$ rg. $m * w / g$ and

$$
m v=\frac{W}{g} v \frac{3200 \mathrm{lb}}{32 \mathrm{fc} / \mathrm{sec}^{2}} \times 50 \frac{\mathrm{Et}}{\mathrm{sec}}=5000 \mathrm{slug-ft} / \mathrm{sec}
$$

[b] CORRECT ANSWER: $8.9 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
Since the frictlonal force is negligible, the system under consideration is conservative, and consequently the total energy of che point mass remains conscant. If the porential energy is taken to be zero at the bottom of the loop, we havn

$$
\begin{equation*}
m g h=m g(2 R)+K_{B} \tag{1}
\end{equation*}
$$

Where K_{B} if the kinetic energy of the particle at point B. However.

$$
K_{B}=\frac{P_{B} 2}{2 m} \quad F_{Q}=\text { momentum of the parcicle at point } E
$$

Therefore, equation (1) becomes

$$
\begin{equation*}
\operatorname{mgh}=\operatorname{mg}(2 R)+\frac{\mathrm{P}_{\mathrm{B}}{ }^{2}}{2 m} \tag{2}
\end{equation*}
$$

Solving for Pa yields

$$
\begin{aligned}
P_{\mathrm{B}} & =\sqrt{2 \mathrm{~m}^{2} \mathrm{~g}(\mathrm{~h}-2 \mathrm{R})} \\
& =\sqrt{2 \times 4 \times 9.8 \times \mathrm{I}} \\
& =8.9 \mathrm{~kg}-\mathrm{gZ} / \mathrm{sec}
\end{aligned}
$$

TRUE OR YALSE? The momentum of the sliding particle is griater at point 8 than it was at point A.
[a] CORRECT ANSWER: A
The nomentur \vec{F} of the center of mass is equal to the sum of the individual momenta. The resultant momentum in the easterly direction has a magnitude given by
$P_{\mathrm{E}}=(2 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{sec})+(3 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{sec})$
$=50 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
In the northerly direction, the romentum has a magnitude P_{N} :
$P_{N}=(2 \mathrm{~kg})(25 \mathrm{~m} / \mathrm{sec})=50 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$

Fron the vector diagram of ${ }_{E}{ }_{E}$ and ${ }_{\mathbb{P}}$, we can calculate total momentum \vec{P},
$\mathbf{P}=\sqrt{\mathrm{P}_{\mathrm{E}}^{2}+\mathrm{P}_{\mathrm{N}}{ }^{2}}=71 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
$\theta=\tan ^{-2}\left(P_{N} / P_{E}\right)=\tan ^{-1} 1=.45^{\circ}$
Ftailly, $\overrightarrow{\mathrm{V}}_{\mathrm{cma}}=\frac{\mathrm{T}}{\mathrm{T}} / \mathrm{M}$

$$
v_{\mathrm{cm}}=\mathrm{P} / \mathrm{M}=71 /(2+3+2)=10.1 \mathrm{~m} / \mathrm{sec}
$$

TEUE OR FALSE? The velocity of t're center of mass of thig systera is deterained by adding the individual particle velocicies algebraically.

[a] CORRECT ANSWER: A

The total momentum of a system of particles is equal to the product of the total mass of the system and the velocity of the cencer of mass,

$$
\begin{equation*}
\vec{p}=\left(m_{2}+m_{2}\right) v_{c m} \tag{1}
\end{equation*}
$$

Where

$$
\begin{equation*}
\vec{P}=\vec{p}_{1}+\vec{F}_{2}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2} \tag{2}
\end{equation*}
$$

Where \vec{v}_{1}, \vec{p}_{1}, and \vec{v}_{2}, \vec{p}_{2} are the velocities and momenta of the particles of mass mi and mi, respectively. Let the easteriy direction lie along the positive $x-3 x i s \rightarrow$ so that the westerly direction will lie along the negative \dot{x}-axis. Hence \vec{v}_{1} and \vec{v}_{2} have components in the x-direction only. Therefore,

$$
\begin{aligned}
P & =m_{1} v_{1}-m_{2} v_{2} \\
& =2 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{sec}-3 \mathrm{~kg} \times 20 \mathrm{~m} / \mathrm{sec} \\
& =-40 \mathrm{~kg}-\mathrm{n} / \mathrm{sec}
\end{aligned}
$$

The magnitude of the total momentum $1940 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$ and 1 s due west.
Frem equation (1) we have

$$
\vec{v}_{\mathrm{cm}}=\frac{\overrightarrow{\mathrm{P}}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}
$$

Substitutisn of the numerical values yields

$$
v_{C R}=\frac{40 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}}{(2 \mathrm{~kg}+3 \mathrm{~kg})}=8 \mathrm{~m} / \mathrm{sec}
$$

The direction of $v_{c m}$ is the same as that of the total monentim p, i.e., along the negative x-axis.

TRUE OR FAlSE? The direction of the center-of-tass velocity vector is the same as that of the cotal momentum vecfor.
[a] CORRECT ANSWER: D
Introduce the notation \vec{P}_{2} and \vec{P}_{2} for the momenta of the $2-\mathrm{kg}$ and $10-\mathrm{kg}$ particles, respectively. We want to calculate the angle θ as shown in the diagram below.

From the geometry, we have

$$
\tan \theta=P_{1} / P_{2}
$$

substitute values of P_{1} and P_{2} to find

$$
\begin{aligned}
\tan \theta & =(2 \mathrm{~kg} \times 1 \mathrm{~m} / \mathrm{sec}) /(10 \mathrm{~kg} \times 2 \mathrm{~m} / \mathrm{sec}) \\
& =0.1
\end{aligned}
$$

Therefore,

$$
\theta=\tan ^{-1} 0.1=6^{\circ}
$$

(a) CORRECT ANSWER: C

The excernal forces on the rocket are those exerted by gravity and the bolts, both dowmard. Since the racket is stationary, dv/dt is zero, and the "rocket equation",

$$
\vec{F}_{\text {ext }}=m \frac{d \vec{v}}{d t}-\vec{u} \frac{d m}{d t}
$$

reduces to

$$
\vec{F}_{\text {ext }}=-\vec{u} \frac{d m}{d t}
$$

Finally, the exteral force is given by

$$
\vec{E}_{\text {ext }}=\overrightarrow{m g}+\vec{F}_{b}=-\vec{t} \frac{d m}{d t}
$$

[b] CORRECT ANSWER: D

The whole system was woving with a velocity $\stackrel{\rightharpoonup}{v}$ before the string was cut. Hence, \vec{v} is the finftial velocity of the center of mass. \$ince the table is frictionless, the external force actitg on the system, both betore and after the string is cut, is zero. Therefore, the momentum (and velocity) of the system remain unchanged. The final velocity of the center of mass is \vec{v} and the momentum is $\left(m_{1}+m_{2}\right) \vec{v}$.

TRUE OR FALSE? The momentum of the system remains unchanged because all of the forces fnvolved in this interact ion are internal ones.
[a] CORRECT ANSWER: A
The momentum of a system is the vector sum of the individual montenta.

$\Phi_{1}=8 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{sec}-80 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$; at $60^{\circ} \mathrm{N}$ of E
$\overrightarrow{\mathrm{P}}_{2}=12 \mathrm{~kg} \times 5 \mathrm{~m} / \mathrm{sec}=60 \mathrm{kgm} / \mathrm{sec}$; at $30^{\circ} \mathrm{S}$ of E
Using the fact that \vec{b}_{1} and $\overrightarrow{\underline{Z}}_{2}$ form a right angle. we find
$\mathrm{p}=\sqrt{\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}} \cdot \sqrt{80^{2}+80^{2}}=100 \mathrm{~kg}-\mathrm{tu} / \mathrm{sec}$
[b] CORRECT ANSWER: B
For a system whose mass is constant we have

$$
\frac{d \vec{p}}{d t}=\frac{d}{d t}(m \vec{v})=m \frac{d \vec{v}}{d t}=m \vec{R}
$$

80

$$
a=\frac{1}{m} \frac{d p}{d t}=\frac{1000 \mathrm{gm}=\mathrm{cm} / \mathrm{sec}^{2}}{100 \mathrm{gm}}=10 \mathrm{~cm} / \mathrm{sec}^{2}
$$

[a] CORRECT ANSWER: C

From the impulsemomentum principle we know that to find the impolse imparted to m_{2}. We must compute the change in the monentum of T_{2}. Thus.

$$
\vec{J}_{2}=\Delta \vec{p}_{2}=\vec{p}_{2 f}+\vec{p}_{21}=\vec{m}_{2}\left(\vec{v}_{2}-\vec{v}\right)
$$

TRUE OR FALSE? Frictional forces must be considered when caleulaning the change in momentum of mass 2 .
[b] COREECT ANSWER: 155 seconds
The maximun velocity will occur at the instant the fuel has been consumed. Until then, the rocket accelerates; thereafter, it decelerares.

The rocket is losing mass (or weight) at a constant rate. Thus

$$
\frac{d(m g)}{d t}=\frac{d 山}{d t}=-2840 \mathrm{lb} / \mathrm{sec}
$$

or

$$
\int_{0}^{1} d t=-\frac{1 \sec }{28401 b} \int_{w_{i}}^{\infty} d w
$$

and

$$
\begin{aligned}
t=-\frac{1}{2840 \mathrm{sec}}\left(w_{\mathrm{E}}-w_{i}\right) & \left.=-\frac{1 \mathrm{sec}}{2840 \mathrm{Ib}} \right\rvert\,(2780-3000) \text { tons } \left.\times 2000 \frac{1 \mathrm{~b}}{\operatorname{ton}} \right\rvert\, \\
& =155 \mathrm{sec}
\end{aligned}
$$

TrUE 0 FALSE? According to the conditions given in the solutspa. this rocket must be triveling iorizontaliy in a vacuim.
[a] CORAECT ANSWER: $8 \mathrm{kgm} / \mathrm{sec}$
The known quantity is kinetic energy K,

$$
x=m v^{2} / 2
$$

where m is the mass of the block, and v is its speed.
Solving for v,

$$
v=\sqrt{2 \mathrm{k} / \mathrm{mt}}
$$

so the momentum, p, is given by

$$
\begin{aligned}
p=\mathrm{mv} & =\underline{m} \sqrt{2 k / t} \\
& =\sqrt{2 \mathrm{mk}} \\
& =B \mathrm{~kg}-\mathrm{m} / \mathrm{sec}
\end{aligned}
$$

[b] CORRECT ANSWRR: $1.5 \mathrm{~m} / \mathrm{sec}$
The momentum of the system is zero before the dive. In the absence of an external force, momentus la conserved during the dive; therefore, the monentum of the system after the dive is also zero. We simply have to solve the equation $m_{2} v_{1 x}+m_{2} v_{2 x}=0$ for $v_{2 x}$. Thus,

$$
v_{2 x}=-\frac{\mathrm{m}_{1} v_{3 x}}{m_{2}}=-\frac{70 \mathrm{~kg} \times 3 \mathrm{~m} / \mathrm{sec}}{140 \mathrm{~kg}}=-1.5 \mathrm{~m} / \mathrm{sec}
$$

the minus sign indicating that $\vec{v}_{2 x}$ is directed oppositely to $\overrightarrow{\mathbb{V}}_{1 x}$.
[a] CORRECT ASSWER: $2710 \mathrm{~m} / \mathrm{sec}$
With $v_{0}=0$ and the upward as the positive direction in the given equacion we obtain

$$
v=u \ln \left[\frac{m_{0}}{m}\right] \sim g t
$$

The maximun velocity is attained at $t=155 \mathrm{sec}$, at which time mg $=2780$ soms. Now mog $=3000$ tons and $u=55,000 \mathrm{~m} / \mathrm{sec}$, so

$$
\left.v_{\max }=55,000 \ln \left\lvert\, \frac{3000}{2780}\right.\right\}-[9.8 \times 155\} \neq 2710 \mathrm{~m} / \mathrm{sec}
$$

TRUE OR FALSE? The weight of the rocker reaches its minimum value at the instant that the rocket attains its maximum speed,
[b] CORKECT ANSWER: B
The impulse imparted to mi is

$$
\begin{equation*}
\vec{y}_{1}=\overrightarrow{\Delta p}_{p}=\vec{p}_{1 f}-\vec{p}_{1 i}=m_{1}\left(\vec{v}_{1 f}-\vec{v}_{1 i}\right)=m_{1}\left(\vec{v}_{1}-\vec{v}\right) \tag{1}
\end{equation*}
$$

This expression, however, is not listed among the answer choices,
We say use Newton's third iaw of motion which states that the force exerted by m_{1} on m_{2} (with the spring as intermediary), is equal to the negative of the forcs exerted by m_{2} on w_{1}. Since the forces also act for the same dutation we have

$$
\vec{J}_{1}=\int_{i_{i}}^{t_{1}} \vec{F}_{12} d t=-\int_{i_{i}}^{1_{1}} \vec{F}_{21} d t \Rightarrow-\vec{J}_{2}
$$

Using the result of the preceding problem, we obtain

$$
\vec{j}_{1} \propto \vec{j}_{2}=-m_{2}\left(\vec{v}_{2}-\vec{v}\right)
$$

Self-Paced PHYSICS

NEW YORK INSTITUTE of TECHNOLOGY

REVEALED
U. 5. NAVAL ACADEMY

STUOY CUFE
SEEF-PACED PHYSICS

REVEALED
U.S. NAVAI ACADEMY

STUDY GUIDE
SELF-PACED PHYSICS

REVEALED

REVEALED
U.S. NAVAL ACADEMY

STHOK GUIDE

REVEALED
U.S. NAVAL ACADEMY

STUDY GUIDE
SELF-PACED PHYSICS

REVEALED
4. S. NAVAL ACADEMY

STUDY GUIDE
(21b)

Self-Paced pHYSICS

ILLUSTRATED TEXT

CENTER OF MASS

(a) for a solid ball

(b) for a hollow ball

FIGURE (1)

The center of mass of an object may be described as that single point at which all of its taass appears to act. For an object of uniform density having some regular shape, such as a solid wooden ball, ith center of mass is easily located to be at the geometric center, as you can bee in Figure 1. Finding the location of the center of mass for a hollow rubber ball is no more difificult-it too is at the geometric center, even though none of the actual mass of the ball is located at that very point.

Many objects, having either reguler or irregular shapea, have centers of mass located in spacem-probably the chair you are otting on at this monent or the cup or glass you used this morning are good examples to consider. Por these objects, the center of mass acts in every way just as it does for one having a center of mass within the medium itself-as with the solid ball.

EQUAL MASS CARS

FIGURE

The concept of center of mass can be a powerful tool in the study of motion, gince all rigid bodies, regardless of shape, volume, or density, can be considered to be point masses acted upon by external forces, thereby simplifying the application of Nepton's laws of motion.

A task that at firat acens difficuly is the analysis of the motion of a body when internal forces are also acting. Let's see what effect. if any, they might have. To do tiils, let's examine the effect of an explosion on the center of pass of a systen consisting of two equal masacs. In Figure 2, you see two fdentical cars about to be exploded apart by a compressed spring. Before the explosion, the center of masa of the systen is widway between the cars. When the explosion occurs, each car receives an equal, but opposite force to the other, for the same period of time, givitg each similar accelerations. But at any time, the center of mass of the system can be found to be at the same point, unaffected by the explosion.

UNEQUAL MASS CARS

Fig. 3

You may weli ask, what wowld have happened if two unequal masses were chosent Let's repaat the explosion, this time with unequal cars; say they hate a mase ratio pecueen them of $1: 2$. Once again the explosion wili apply equal and opoaite forcen on the care, but this tima one car, the lighter one, will accelerate as tuice that of the heavy car, thereby moving twice as far in equal time, Consequently, the center of mass of the system remains in the same position, unaffected by internal forces af you can see by examinkig Figure 3. As a matter of fact, even tif the two carg have gene initial velocity while linked together, their center of pass would continue to move at that veloeity even after the exploaion occurs.

figure (4)

Before closing, let's apply these principles to aome typical motion problem. A good one to conaider would be the motion of an explodable ball as it moves in a parabolic trajectory. Nere, in Figure 4, the ball is subjected to some initial accelerating force, and a constant gravitation force, both acting externally. as well as an internal explasive force.

Before the explos t the balf travels intact along a parabolic path guverned by the effects of its inftial velocity and gravitation. The ball in then exploded intal framents, each aoving away From the center of gravity at a rate dependent upon the explosive force and its size. nond each still is affected by the initial velocity and gravitation. Since the explosive inecrnal force has been shown te have no effect on the centar of gravity + it motion continues olong the parabolic trajectory as though tite sall had remained intact.

Self-Paced pHYSICS

NEW YORK INSTITUTE of TECHNOLOGY

MOVEMENT OF CENTER OF MASS

CENTER OF MASS

(a) for a solid ball

(b) for a hollow ball

FICURE
(1)

EQUAL MASS CARS

FIGURE

UNEQUAL MASS CARS

1

FIGURE:
(3)

PIGURE
(4)

Self-Paced PHYSICS

NEW YORK INSTITUTE of TECHNOLOGY

DIAGNOSTIC TEST - DELTA

T.O. 1

A mile is approximatcly equivaleat to:
(A) 1.6 km
(B) 0.6 km
(c) 0.45 mm
(D) 2.54 kn
T.0. 2
$R R$ or $C b$
In the equation for coustant velority

$$
v=\frac{\left(x-x_{0}\right)}{t}
$$

(A) x and x_{0} depend upon the frane of reference and t does not depend upon the frame of reference
(B) x and x_{0} do not depend upon the frame of reference and t does depend upon the frame of reference
(C) $x_{+} x_{0}$, and t depend upon the frame of reference
(D) $x, x_{0 \text { e }}$ and t do not depend upon the frame of reference
2.0. 3

0 CJ
Express the sum of the numbers $15,140.001$, and 0.57
(A) 155.571
(B) 155.57
(C) 156°
(D) 160

```
T.O. 4
A
```

 values are 5.0 nt at 045.0° and 5.0 nt at 150.0° The direction of the resultant foree is
(A) Betveen 0° and 90°
(B) Between 90° and 180°
(C) Between 180° and 270°
(D) Between 270° and 360°

1.0. 5

The center of mass of a hoilow sphere
(A) is locaten at the geometric center even though no tuass is present at that location.
(B) is distributed th. ougheat the mass since it cannot be located in enpty space.
(C) does not exist at all for a sylnere whout nass at its center.
(D) forms its own sphericel surface whel touches everymare the inside surfiace of the hollon sphere.
4.0. 6

A boy throws a baseball vertically upivard. If the ball is caught 4.0 seconds later, what height dad it aitain?
(A) 264 B
(B) 78 m
(C) 64
(D) 19.6 n

In which one of the follo:ing graphs an we be sure that the acceleration is varying?

(2)

(4)

(A) 1
(B) 2
(C) 3°
(D) 4
T.0. 8
cu
In the equation

$$
\alpha=v_{0}+\frac{1}{2} a(2 t-1 \sec)
$$

a m acceleration and $t \approx$ tinc. From analy $=$; of the dimensions, a is tive equation of
(A) position
(B) speed
(C) acceleration
(D) has no meaning since it is dimensionally inconsiscent
1.0. 9

To test for the gravitational acceleration, of a ball is dropped from rest from a height mind falls for the time t to the ground. The grevitational acceleration, g. can
be found by:
(A) $B=\frac{2 \pi}{t^{2}}$
(B) $y=\frac{4 n^{2}}{t^{2}}$
(c) $g=\frac{2 m}{t}$
(D) Insuffictont data Hust know Lupact velocity to solve.

T. 0.10

MS:
 is observed by a station attendme standing on in statian: plation... If the tratn moves to the riglit at $10 \mathrm{ft} / \mathrm{se}$ relative to the stationery platform-obecrver, whe the walkirg moth raves at $8 \mathrm{ft} / \mathrm{sec}$ to the right relative to the sate station attendent; how fast does the man watk rolative to the arain?
(A) $18 \mathrm{ft} / 5 \mathrm{sec}$ to the right
(B) $18 \mathrm{ft} / \mathrm{sec}$ to the left
(c) $2 \mathrm{ft} / \mathrm{sec}$ to the right
(D) 2 ft/sec to the leEt
T. O, 11

Cu
The hastantaneous velocity may be deterained from $v=$ at only Eor
(A) Variable acceicration
(B) varisble velocity
(c) constant acceleration
(D) constant velacity
T. 0.12

CR

A baseball player hits a fly ball whose trajectory reaches a maximum height of $h_{\text {; }}$ the time the outifeleter has to posirion himself for his catch can be found by:
(A) $\frac{2 h}{g}$
(B) $\frac{4 b}{8}$
(C) $\sqrt{\frac{2!}{g}}$
(D) $2 \sqrt{\frac{29}{g}}$
T.0. $1:$

How long does it take for a force F to change the sped of w object from v_{o} to v if its mass is m?
A. $t=\frac{m\left(v_{a}-v\right)}{f}$
B. $\quad t=\frac{m\left(v-v_{0}\right)}{F}$
c, $\quad t=\frac{\left(v-v_{Q}\right)}{F_{H}}$.
D. $t=\frac{\left(v_{B}-v\right)}{F_{m}}$

T.0. 15

CR
The weight of an anermait (nass tis in orbit at an altitude above the Earth (mass M) cqua3 to the Forth's radius, k, wh be foum from
A. $W=G \operatorname{MnR}^{2}$
E. $\quad W=4$ Ginan 2
c. $H=G \frac{N(n)}{h^{2}}$
b. $W=G \frac{M m}{4 R^{2}}$
T.0. 16

A man tries to push his wtalled car on a level road. The maximaz force fe is able to apply is \bar{f}, but this is foss: :ame to move the car. The reaction to his force
(B) $-\vec{r}$
(C) $2 \vec{F}$
(b) 2nad, since the car does not zove
1.0.

(A) the slan of the ande of inclination.
(8) the cosine af the angle of inclinntion.
(c) tre tangent of the ancle of inclination.
(D) a more conplex functign of the nigle.

T.0. 18

The period of eact revolution, T, of an object mowing sins: - m: with a spoed v in a circular path of radius x cas be expressed as:
(A) $2 \pi r / v$
(B) $\mathrm{v} / 2 \pi \mathrm{r}$
(C) $4 \pi^{2} x^{2} / v$
(D) $V / 4 H^{2} \mathrm{C}^{2}$
T.0. 19

A coin of mass m is placed on a stationary phono turntabie at a distance r from the spindle. The witch is tumed on and the turntable begins to accelerate. If the coefficients of friction ate respectively μ_{s} and j_{k} (static and k anetic) the maguitade of the centripetal force F_{c} on the coin just befors the coin starts to slide is
A. $\quad F_{c}>H_{s} \mathrm{mg}$
B. $\quad F_{c}<\mu_{s} m g$
C. $\quad \bar{F}_{\mathrm{e}}=\mu_{\mathrm{s}} \mathrm{m}$

D, pone of the above

T.0. 21

A womab begens to lift a pail of vater out of a well; tive initial total veight is W. The pail hes a leat; hoveder, and as the pail is lifted a distance y, vater is slowly lost. The twrik of the noman is
A. Wy
B. $\frac{1}{2} W y$
c. $\frac{1}{2} k y^{2}$
D. vanble to be deter:ined from the information given
1.0. 22

The power P devcloped by a reschine thich does an amount of work H in Eine t is
A. $p=W t$
B. $\quad \mathbf{P}=W t^{2}$
C. PAW゙大
D. $\quad \mathrm{P}=\mathrm{B} / \mathrm{L}$

(A) One-hatif of the proture af the tiass 0 a body and the square of its seeed is called the kinette encrey of the body.
(B) The work done by the resultent force acting on a body fis equal to the thance in the kinctic eherey of the body.
(C) The Gixetic encrgy of a jody in nutim is equal to the horl it ent do in beina broughe to rest.
(D) The kinctic लmergy is a fumetion of position whose nefative detivative gives the farce.
T.O. 24
m^{\prime}
Which of the following fores is not enservative?
(A) the frictional force
(B) the gravitationd forec
(c) the foice exerted by an itieal sprine
(D) the force exerted on a charge ins an electric field
T.0. 25

The statement of the conservation of nedianical energy is
(A) $\Delta K+\Delta 0=0$
(B) $\mathrm{FrC}_{\mathrm{nc}}=\mathrm{AK}$
(c) $W_{n c}=A K+\Delta U$
(b) $\Delta t=0$
where man $^{\text {is }}$ the work done by nonconcervative forces.

1.1. 26

 energy cqual to
(A) $\operatorname{tag} x$
(i) mikx
(c) $1 / 2 \mathrm{k}$
(D) $1 / 2 k x^{2}$

T. 0.27

The mass of a strople pentulum tob is m. It is aireyadeet slighty fron its equiljbriun position such that the beb is a ledsht h above its equifibrjum level. It is now relcased fron reat. Its velocity at the botton of its suind can be compured fros
(A) $1 \mathrm{~m} \hbar=1 / 2 \mathrm{mvz}$
(B) $\mathrm{gh}^{\circ}=\mathrm{mV}$
(c) $1 / 2 \mathrm{gh}^{2}=1 / 2 \pi \mathrm{~V}^{2}$
(D) gin $=2 v^{2}$
2.0. 28

Whicin of the foilowing is a correct statensub regercting the center of muss of a cireular rike?
(A) It is the entire cuter surface of the ring.
(B) It cannot be the geometrical cember of the fing because there is no material at whis point.
(C) It may be exterior to the -ig. depending yrom heme mass distribution of the ritug.
(D) It is the goometrical cchter of the riug when the mass diseributfon is symetrical around the center.

T.0. 29

Ci
Two partictes rowe tornd axh other, The center of ens, of this syste:
(A) remains equidistant from each partirle.
(e) becouns cioser to the henviar paricte and forthor from t:lighter pirticic.
(C) becomin closez to the lighter parejele ado furtior frum the heavier particle.
(D) becones eloser to both particles.
T. 0.30

CN
Two bodies each of mass 3 kg are noving eastrard; one with a velocity of $2 \mathrm{~m} / \mathrm{sce}$, the other wifth a velocjty of $4 \mathrm{~m} / \mathrm{scc}$. The teenitude of the total fomentuo of the eysten is
(a) $6 \mathrm{~kg}-\mathrm{tg} / \mathrm{sec}$
(B) $12 \mathrm{kgra} / \mathrm{sec}$
(c) $18 \mathrm{~kg}-\mathrm{f} / \mathrm{sec}$
(D) $60 \mathrm{~kg}-\mathrm{nt} / \mathrm{sec}$
T.0. 33

A ball strikes the floor, fos initfal velocity making an ande $\hat{0}$ with the somal. It rebounds with the sane speed also at an ande mith mormal. (The tokal angutar change in direction of the batt is $\left.180^{\circ}-20\right)$ lhat is the direction of the average anmisive fore arerted on the ball by the flooc?
(A) vettically mjentu
(8) verticulty dommatd
(c) at an niele a upard
(D) borfaneaily a lonct the floor

Self-Paced PHYSICS

COMPETENCE CHECK PROBLEMS

SAMPLE COMPETENCE CHECKS

SELF-PACED PHYSICS

4-2.2

A particle is set in motion along a horizontal frictionless surface at a speed of five feet per second. What is its speed at the end of seven seconds?
$4-5.4$
A man lowers vertically a $50-1 \mathrm{~b}$ ball at a constanc speed of $3 \mathrm{ft} / \mathrm{sec}$. The magnitude of the force he applies to the ball
A. decreases as the ball descends.
B. increases as the ball descends.
c. Is less than 50 ib .
D. is equal to 50 lh.
$3-1.3$
A sled moves from rest along a straight horizontal track with a conscant atceleration of $10 \mathrm{ft} / \mathrm{sec}^{2}$. At the end of ten seconds (10 sec) its engine cuts off and it cones to rest with a constant deceleration of $4 \mathrm{ft} / \mathrm{sec}^{2}$. What is the total distance sraveled by the sled?
A. 2,750 \& t.
B. 875 ft .
C. $\quad 50 \cap \mathrm{ft}$.
D. 1, nol Et.
E. 1.250 ft .

3-18.2
A projectile has an initial speed of $176 \mathrm{ft} / \mathrm{sec}$. Assume that the projectile is initially at round level, and that air resistance may be neglected. What is the maximum range of the projectile?
A. $\quad 242 \mathrm{ft}$.
B. 484 ft .
C. $\quad 726 \mathrm{ft}$.
D. 968 ft .
E. 1,210 ft.
$4-3.1 .4$

Near the surface of Saturn, objects fall with an acceleration of $11.8 \mathrm{~m} / \mathrm{sec}^{2}$. What is the wefgit of a 4000 gram mass at Saturn's surface?

Self-Paced PHYSICS

FCMEWRR

- Our new book has innovative pedagogical features, but it is designed so that the instructor may use it as he would anv other introductory physics text. No revisions in syllabi or lectures are required-athe topical coverage is a faniliar one. Reading and homework problems can be assigned as usual. Gi course, the instractor may sreatly incxease the effectiveness of this book through his active participation.

A feature of the text is an emphasis on problem solving. wach of the exposition is in the form of problem stacement: and their solutions. It is reasoned that since students are tented and evaluated by problems, problem-oriented instruction is most relerant for them. A consequence of this emphasis is that the lecturer may safely spend more time bringins phusics to life for his students, and less time grinding through examples.

The course objectives are embodied in pxoblem statements, the core problems. The importance af nuch goalwdirecting problems ean hardly be over emphasized. If rest questions ate distributed well in advane of a contomtional examation, test nerformance is predictably high. Simalar high achievement can be expected if, in order to avold outright memorization, the questions for advance distribution are known so be minor variations of the actual examination questions. When such a tiest and its precursor are expanded to cover the entire course con* unt at appropriate levels, ve then have a rough parailel to this goal-directed approach.

Gore problems correspond to test questions distributed in advance.
fariations of thase are called ane remen problems and can de viewed as corresponding to terminal examination questions. of sorise, a core prime problem is used as a self-test rather than an instrument for grading.

Each sertion of the text hegins with a discussion of theory followed by the associated core prohlem statement. A atudent can attempt to molve the core problem and then choose one of theee options on the basis of his Performance: proceed to the next section, attempt to solve the core prime problem, or read and work through a sequence of emabling problems which fillustrate mafor steps in the solution of the core problem. The format fir a section is:

Theory
Core Problem and Solution
Enabling Problem 1 and Solution

Enabling Problem N and Solution
Core Prime Problem
Thus, when a student is able to solve a core probiem with confizence, he maximizas his progress by moving directly to the next secirit. Some students expect that they can execute problems similar to the core after having seen the correct solution. Of ten, such students have made a minor error in the core and only need a similar problem for practice and reinforcenent; this is provided by the core prime problem. When a student incorrectly assesf:s his ability to solve the crre prime, or when he realizes that his understanding of the core problem is deficient: then he takes the enabling probien sequence. The core prial problem is always encountered at the end of the enabling sequence.

The text should have special appeal for students because it teaches those facts and skills which are gexerally tested, When a stadent can solve the core problem or minor modification thereof, he has attained the learning objective. Inlike most conventional texts, the student knows exactly what is expected of him, obviously, the instructor can contribute greatly to the intended plan simply by declaring that hiss test questions will be either variations of core problems or fragments of core problems.

It is not surpristing that many professionals regard such goaldirected teaching as tantanount to sheating. They have tacitly accepred that an examination in basic physics really should test more than was taught; it should help determine scfentfic aptitude, orioinality, and imaginitum, This may sarve a useful purpose, but untill we know how to teach these qualities it seems reasonable to separate them from examinations Purporting to measure gains in knowledge.

The princtples and appreach taken in the book have heen found to increase performance on the objectives (core problens) by 57% over the traditional format of a theory section alone.

Each chapter concludes with a set of review problems. These are categn" ized as "A" and "B" problems corresponding respectively to simple exercises and core-level problems. The "Overview" serves as an example of faterstitial material which will introduce all mafor topic areas (mechanics, thermodynamics, optics, wave motion. electromagnetism, and modern physics).

Finally, the hook is ideally suited $t=$ self-study. Perhaps an unusual application ef the book will be to abolish conver.tional class meetings and schedule hours during which the finttructor is available for more fadividualized tutorial assistance,

CHAPTER 10

SAMPLE

Lineax momentum is a physical quantity which, like mechanfal energy, is conserved under certain general conditions. Much of the beauty and utility of such conserved quantities is a result of their relating "initial" and "final" events without consideration of any detailed inturmediate processes.

In this chapter, our objectives are to define momentum both for individual particles and systems of particles, and to introduce the principle of conservation of momentum.

10-1 The defintition of Momentum

The linear momentum \vec{p} of a paricicle is the product of the mass m and velacity $\overrightarrow{\mathrm{v}}$:

$$
\begin{equation*}
\vec{p}=\overrightarrow{m v} \tag{10-1}
\end{equation*}
$$

Notice that momentum is a vector quantity, so that in order to specify the momentum of a particle completely, the magnitude and direction faust both be given.

Linear momentum is so mamed to distinguish it from anguisr momentum, although most often, linear momentum is referred to simply as momentum. No special name is given to its unit; it is slug-ft/sec in the British system and $\mathrm{kg}-\mathrm{m}$ fin the MKS system,

The definition of montum fot a particle also applies to real bodies when all of the mass of the body in coasidered to be concentrated at the center of mass.

This problem section requires that you determine the aagnitude of monentum for a body of given mass using energy considerations to find the velocity.

PROBEEM

A 2 -kg block alides along the frictionless track shown in the figure. If the block's speed at
 point A is $10 \mathrm{~m} / \mathrm{sec}$, what is che mowencum in $\mathrm{kg}-\mathrm{m} / \mathrm{sec}$ of che block at point 8 ?

SOLUTION

Since non-conservarive (Erictional) forces are absent, the total energy of the block is conserved. If the potential energy in taken to be zero at point A, we have

$$
K_{A}=K_{g}+m g h
$$

With the subscripts A and 8 referring to points A and $B_{\text {, respectively. }}$ since

$$
x=\frac{m v^{2}}{2}
$$

(1) becomes

$$
\frac{m v_{A}^{2}}{2} \cdot \frac{m v_{B}^{2}}{2}+m g h
$$

Solving for v_{B}, we have

$$
v_{B}=\sqrt{v_{A}^{2}-2 g h}
$$

and the momentum P_{g} at point B is given by

$$
\begin{aligned}
p_{B}=m v_{B} & =m \sqrt{v_{A}^{2}-2 g h} \\
& =2 \sqrt{100-38}=2 \sqrt{2} \mathrm{~kg}-\mathrm{m} / \mathrm{sec}
\end{aligned}
$$

ENABLING PROSLEMS

1. A $3200-1 \mathrm{~b}$ automotile F s beading north at a speed of $50 \mathrm{ft} / \mathrm{sec}$. Its momentum is a vector difected north with a magnitude of
A. $160,000 \mathrm{lb}-\mathrm{ft} / \mathrm{sec}$
B. $160,000 \mathrm{slug-ft} / \mathrm{sec}$
C. 5,000 slug $-\mathrm{ft} / \mathrm{sec}$
D. 5,000 $\mathrm{ib}-\mathrm{ft} / \mathrm{sec}$

SOLUTEON

The magnitude of the momeatum is equal to the mass of the automobile times its speed. Since $\omega \mathrm{m} \mathrm{mg}, \mathrm{m}=\mathrm{w} / \mathrm{g}$ and

$$
\mathrm{mv}=\frac{\mathrm{w}}{\mathrm{~g}} \mathrm{y}=\frac{3200 \mathrm{l}}{32 \mathrm{ft} / \mathrm{sec}^{2}} \times 50 \frac{\mathrm{ft}}{\sec }=5000 \mathrm{slug}-\mathrm{ft} / \mathrm{sec}
$$

2. A 2-kg block slides with constant velocity down atr inclined plane, The kinetic energy of the block is 16 joules. What is the magnitude of the black's momentum in $\mathrm{kg}-\mathrm{m} / \mathrm{sec}$?
somurion

The known quantity is kinetic energy k,

$$
\mathrm{K}=\pi \mathrm{V}^{2} / 2
$$

where ma is the mass of the block, and v is ita speed.
Solving for \because

$$
\mathbf{v}=\sqrt{2 k / m}
$$

so the moneatum, D, is given by

$$
p=m v=m \sqrt{2 k / a}
$$

- $\sqrt{2 \mathrm{mk}}$
- skg-m/sec

COAPETENCE CHECK 10-1

A particle of mass $w 2 \mathrm{~kg}$ slides down a track to enter an inside loop of radius $R=50 \mathrm{~cm}$ shown in the figure below. Without losing contact with the track at any time, it starts from rest at point A. What is its motentum at point B. Jeglact friction.

10-2 Momentur of a System of Particles

The total momentum $\overrightarrow{\mathbf{p}}$ of a system of \mathfrak{n} particles is mimply the vector sum of all the 1mdividual particle monenta:

$$
\begin{equation*}
\vec{p}=\vec{p}_{1}+\vec{p}_{2}+\cdots+\vec{p}_{n} \tag{10-2}
\end{equation*}
$$

Total momentum is directly related to the velocity $\vec{v}_{\text {cal }}$ of the system's center of mass. To see this, we diffetentiate the center of mass coordinates

$$
x_{\mathrm{cm}}=\frac{\Sigma m_{f_{i}} x_{i}}{\sum n_{i}} \quad y_{c \mathrm{~m}}=\frac{\Sigma m_{1} y_{i}}{\sum n_{i}} \quad z_{\mathrm{cm}}=\frac{\Sigma m_{i} z_{i}}{\sum m_{i}}
$$

with respect to time. The restit is

$$
\vec{v}_{\mathrm{cm}}=\frac{\Sigma n_{i} \dot{v}_{i}}{\Sigma n_{i}}
$$

ot, usiag the definition of momentum, this becomes

$$
\stackrel{*}{\mathrm{v}}_{\mathrm{cm}}=\frac{\Sigma \vec{t}_{I}}{\Sigma m_{i}}
$$

The numerator of this expression is just the total momentum $\overrightarrow{\mathrm{F}}$ and the denominator is the total mass of the systeat M. With these substisutions, we obtain the usefts result

$$
\begin{equation*}
\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{M}}_{\mathrm{cox}} \tag{10-3}
\end{equation*}
$$

The problem section involves finding the notal momentum and center of mass velocity for a pair of particles whose masses and velacities are known.

PROBEEM

Two particles of tass 2 kg and 3 kg respectively, are moving with a speed cf $10 \mathrm{~m} / \mathrm{sec}$ dut east. A thitrd particle of nass 2 kg is movitit with a speed of $25 \mathrm{~m} / \mathrm{sec}$ due north. Determine the velocity of the center of mass, $\overrightarrow{\mathrm{v}}_{\mathrm{cm}}$, of the system of three particles.
A. $10.1 \mathrm{n} / \mathrm{sec}$ at $45^{\circ} \mathrm{N}$ of E
B. 20.2 wi/sec at 37^{*} N of E
C. $10.1 \mathrm{~m} / \mathrm{sec}$ at $37^{\circ} \mathrm{N}$ of E
D. $20.2 \mathrm{n} /$ sec at $45^{\circ} \mathrm{N}$ of E

SOLUTION

The momenture "F of the center of mass is equal to the sum of the individual monenta, The resultant momentum in the easterly direction has a magnitude given by
$\mathrm{P}_{\mathrm{g}}=(2 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{sec})+(3 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{sec})$
$=50 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
In the northeriy direction, the momentum
has a magnitude P_{N} :
$p_{\mathrm{N}}=(2 \mathrm{~kg})(25 \mathrm{~m} / \mathrm{sec}\rangle=50 \mathrm{~kg} \sim \mathrm{~m} / \mathrm{sec}$

From the vector diagram of \hat{F}_{E} and \vec{S}_{N} we can calculate total momencun $\overrightarrow{\text { P }}$,
$P=\sqrt{P_{E_{1}^{2}}^{2}+P_{F}^{2}}=71 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
$\theta=\tan ^{-1}\left(P_{N} / P_{E}\right)=\tan ^{-1} 1=45^{\circ}$
Finally, $\vec{V}_{\text {cu }}=\vec{F} / \mathrm{M}$

$$
V_{c \mathrm{~m}}=\mathrm{F} / \mathrm{M}=71 /(2+3+2)=10.1 \mathrm{~m} / \mathrm{sec}
$$

EKABLING PROBLENS

1. Two bodies $1 \mathfrak{a}$ a system have masses 8 kg and 12 kg and are moving with veloctries $10 \mathrm{~m} / \mathrm{sec}$ at 60° north of east and $5 \mathrm{~m} / \mathrm{sec}$ at 30^{*} bouth of enst, respectively. The magnitude of mamentum of the system is
A. $100 \mathrm{~kg}-\mathrm{n} / \mathrm{sec}$
B. $140 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
C. $20 \mathrm{kjw} / \mathrm{sec}$
D. $70 \mathrm{~kg}-\mathrm{m} / \mathrm{e} \mathrm{e}$

SOLUT ION

The monentum of a systen is the vector sum of the individual momenta.

$\vec{P}_{1}-8 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{gec}-80 \mathrm{~kg}-\mathrm{m} / \mathrm{Aec} ;$ at $60^{\circ} \mathrm{N}$ of E
$\overrightarrow{\mathrm{P}}_{2}=12 \mathrm{~kg} \times 5 \mathrm{~m} / \mathrm{sec}=60 \mathrm{~kg}-\mathrm{m} / \mathrm{sec} ;$ at $30^{\circ} \mathrm{s}$ of E
Using the fact that \vec{p}_{1} and \vec{b}_{2} form a right angle, we find
$p=\sqrt{p_{1}^{2}+p_{2}^{2}}=\sqrt{80^{2}+60^{2}} \cdot 100 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
2. A 2-kg particle moves due north af a speed of 1 n/sec. A second particle of mass 10 kg moves due east at a speed of $2 \mathrm{~m} / \mathrm{sec}$, what is the difection of the total monentum of the systen?
A. 18° north of eas:
B. 12^{*} north of east
C. 8^{*} north of east
D. 6° north of east

Solution

Introduce the notation \vec{p}_{1} and \vec{p}_{2} for the momenta of the $2-\mathrm{kg}$ and $10-\mathrm{kg}$ particles, respectively, We want to calculate the angle 0 as shown in the diagran below.

From the geometry, we have

$$
\tan \theta=P_{1} / P_{2}
$$

substitute values of P_{1} and P_{2} to find

$$
\begin{aligned}
\tan \theta & =(2 \mathrm{~kg} \times 1 \mathrm{~m} / \mathrm{sec}) /(10 \mathrm{~kg} \times 2 \mathrm{mj} \text { sec }) \\
& =0.1
\end{aligned}
$$

Therefore,

$$
\theta \tan ^{-1} 0.1=6^{\circ}
$$

3. A system of particles with masses of 8 kg and 12 kg has a total momentum of $100 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$ at 23° north of east. Determine the velocizy of the center of mass of the system.
A. $100 \mathrm{~m} / \mathrm{sec} ;$ at 23° north of east
B. $140 \mathrm{~m} / \mathrm{sec}$; at due north
C. $20 \mathrm{ta} / \mathrm{sec}$; at 53° north of cast
D. $5 \mathrm{~m} / \mathrm{sec}$; at 23° north of east

SOLUTIOA

The rotal momentum $\underset{p}{ }$ of a system of particlea is equal to the product of the total mass M of the systmand she velocity of the center of mass,

$$
\ddagger \neq N \xi_{\text {erm }}
$$

Solving for $\vec{v}_{\text {cai }}$, we obtain

$$
\vec{v}_{\mathrm{cm}}=\frac{\mathrm{P}}{\mathrm{M}}=\frac{100 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}}{(8+12) \mathrm{kg}}\left(23^{\circ} \mathrm{N} \text { of } \mathrm{E}\right)=5 \mathrm{~m} / \sec \left(23^{\circ} \mathrm{N} \text { of } \mathrm{E}\right)
$$

COMPETENCE CYECX 10-2

Two particies of mass $m_{1}=2 \mathrm{~kg}$ and $m_{2} * 3 \mathrm{~kg}$ ara moving with velocities of $10 \mathrm{~m} / \mathrm{sec}$ due east and $20 \mathrm{~m} / \mathrm{sec}$ due west, respeceively. Determine the velocity of the center of nass. $\vec{v}_{c m}$, of the system.
A. $8 \mathrm{~m} / \mathrm{sec}$; due west
B. $16 \mathrm{~m} / \mathrm{sec} ;$ due east
C. $16 \mathrm{~m} / \mathrm{sec} ;$ due west
D. $8 \mathrm{~m} / \mathrm{sec}$: due north

10-3 The Second Law itn Terms of Momertum
Mass must be coastant if the sacond law in the form

$$
\vec{F}=\mathrm{ma}
$$

is to be valid. In a number of cases, the mass of the sysrem continsally varies so that this equation can no longer be applied. for example, as a chemically propelled rocket noves, it burns fuel continaously so that fits mass decteases with time. Such problems are most easily handed by applying monentum considerations and, for this reason, it is important to be able to apply the second law in momentum terms.

Newton's expression of the second law in Latin, when translated freely into modern rerminology . reads

The rate at which the momentum of a body changes is
proportional to the resultant farce acting on the hody
and takes place in the direction of the stratght ine
in. 去h the force acts.
In equation form,

$$
\begin{equation*}
\vec{p} \Rightarrow d \vec{p}, ~ i t \tag{10-4}
\end{equation*}
$$

If the mass is constant, the more faniliar form of the serond law is valid since

$$
\vec{E}=d \vec{p} / d t=d(\overrightarrow{n N}) / d t * m d \vec{v} / d t \geqslant m \vec{A}
$$

Force and the rate of change of momentum must be equated to solve the followang problem.

PRODLEM

The total mass of a system is 1 kg and the magnitude of the syatem'a momentum is changing at the rate of $15 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}^{2}$. What is the magnt tuda of the net extarnal force exerted on the system?

SOLUTYON

Newton's second law of mation can be expressed an

$$
\vec{F}=\frac{d \vec{p}}{d t}
$$

This thows that the force exerted on a body is equal to the time rate of change of itn momentum. Rence, the magnitude of the force exerted on the given system is is $\mathrm{kg}-\mathrm{m} / \mathrm{sec}^{2}=15 \mathrm{nt}$.

ENABLING PKORLEM

The total mass of a system is 100 gm , and the magnitude of the systent s momenturi is shanging at the rate of $1000 \mathrm{gmocm} / \mathrm{sec}^{2}$. The magnitude of the acceleration of the center of mass of the system is
A. $1000 \mathrm{~cm} / \mathrm{sec}{ }^{2}$
B. $10 \mathrm{~cm} / \mathrm{sec}^{2}$
C. $100,000 \mathrm{em} / \mathrm{sec}^{7}$

1. $98,000 \mathrm{~cm} / \mathrm{sec}^{2}$

SOLUTION

For a system whose masb is constant we have

$$
\frac{\vec{d}}{d t}=\frac{d}{d t}(x \vec{v})=w \frac{d \vec{y}}{d t}=\overrightarrow{d t}
$$

$\$ 0$

$$
a=\frac{1}{\mathrm{~m} i} \frac{d p}{d t}=\frac{1000 \mathrm{gm}-\mathrm{cm} / \mathrm{sec}^{2}}{100 \mathrm{gm}} \cdot 10 \mathrm{~cm} / \mathrm{sec}^{2}
$$

COMPETENCE CHECK $10-3$

The total mass of a systera is 15 kg and the magnitude of the acceleration of its center of mass is $10 \mathrm{~m} / \mathrm{sec}^{2}$. What is the rate of change of the system"s moraencura?

10-4 Conservation of Momentug

Consfder a systes of n particles with total momentur \vec{P},

$$
\vec{p}=\dot{p}_{1}+\overrightarrow{\mathrm{p}}_{2}+\ldots+\overrightarrow{\mathrm{p}}_{\mathrm{n}}
$$

This equation san be differentiated with respect to thate to obtain

$$
\frac{d \vec{p}}{d t}=\frac{d \vec{p}_{d}}{d t}+\frac{d \vec{p}_{\hat{c}}}{d t}+\ldots+\frac{d \vec{p}_{n}}{d t}
$$

Now introduce Newton's second law in momentum terms,

$$
\vec{F}_{i}=\overrightarrow{d \ddot{p}_{i}} / d t
$$

in which \vec{F}_{i} is the force acting on particle i, with the result

$$
\begin{equation*}
\frac{d{ }_{p}^{p}}{d t}=\vec{F}_{1}+\stackrel{t}{F}_{2}+\ldots+\vec{F}_{n} \tag{10-5}
\end{equation*}
$$

The right hand side of this expression is the total forec acting on che system. Forces between the particles due to their mutual interactions (called i-cernal forces) mey be ignored in this sut , cause, by the third Law, the action and reaction forces are equal in magnitude but apposite in sign and theif sum is zero. It follows that the right side of Eq. (10-5) ws just the resultant \vec{F}^{e} of all externat forces due to agents outside of the system of particles:

$$
\begin{equation*}
\frac{d \stackrel{\rightharpoonup}{\mathrm{P}}}{d t}=\overrightarrow{\mathrm{F}} \tag{10-6}
\end{equation*}
$$

When the net external force is zero, we have

$$
d / a t=0
$$

artd the morentum of the system is conserved,

$$
\overrightarrow{\mathrm{p}}=\text { constant }
$$

Another way to express this principle is to state that

When the net external force acting on a sys:
tem is zero, the total initial momentum is
equal to the total final momentum
or, when $\vec{F}^{e}=0$, then

$$
\begin{equation*}
\overrightarrow{\mathrm{P}}_{\text {initial }}=\stackrel{\rightharpoonup}{\mathrm{P}}_{\text {inal }} \tag{10-7}
\end{equation*}
$$

Note that this is vector equation which can be reduced to components when necessary.

Problens in this set entail recognition of the fact that wen the external force is zero in a given direction, then the component of monentum tia that direction is conservect. The principle of monentum conservation is applied to find the final velocity of a body moving in one dimension.

PROBLEX

An 8-ton, open-top frelght cat is coasting at a speed of $5 \mathrm{ft} / \mathrm{sec}$ along a frictionless horizontal track. It suddenly begins to rain hard, the raindrops falling vertically with respect to ground. Assuming, the caf to be deep enough, so that the water does not spatcer over the top of the car, what is the speed of the car after it has collected a.5 tons of water?

Solution

There are no external forces in the horizontal direction acting on the car-water system. Therefore, momentum is conserved. Thus,

$$
m_{1} v_{i} \leftrightarrow m_{f} v_{f}
$$

and

$$
v_{f}=\frac{m_{f}}{m_{f}} v_{1}=\frac{m_{1} g}{n_{f} g} v_{1}=\frac{8 \text { tons }}{12.5 \operatorname{tons}} \times 5 \mathrm{ft} / \sec \Rightarrow 3.2 \mathrm{ft} / \mathrm{sec}
$$

Note that, since the mass (or weight) of the system is involved in a ratio, no conversion to slugs (lb) is necessary.

ENABLINE PROBLEM

A swimper dives from the stern of a stationary 1 whoat. His mass is 70 kg and that of the rowboat 140 kg . The horizontal component of his velocity when his feet leave the boat $i s 3 \mathrm{~m} /$ sec relative to the water. What is the speed of the boat immediately after the dive?

SOLUTION

The momentum of the system is zero before the dive. In the absence of an external force, monentum is conserved during the dive; therefore, the mosentum of the system after the dive is also zero. We simply have to solve the equation $\boldsymbol{m}_{1} \mathrm{v}_{1 \mathrm{x}}+\mathrm{m}_{2} \mathrm{v}_{2 x}$ * 0 for $\mathrm{v}_{2 \mathrm{x}}$. Thus.

$$
v_{2 x}=-\frac{\mathrm{m}_{1} v_{1 x}}{\mathrm{~m}_{2}}=-\frac{70 \mathrm{~kg} \times 3 \mathrm{~m} / \mathrm{sec}}{240 \mathrm{~kg}}=-1.5 \mathrm{~m} / \mathrm{sec}
$$

the minus sign indicating that $\vec{v}_{2 x}$ is directed oppositely to $\vec{V}_{3 x}$.

COMPETENCE CHECK $10-4$

A block of wood of mass Mm 0.8 kg is suspended by cord of nesligible mass. A buliet of mass m $m \mathrm{gm}$ is fired horizontally at the block with a muzzle velocity of $400 \mathrm{~m} / \mathrm{sec}$. The bullet remains enbedded in the block. What is the speed with which the wood block (with bullet embedded) is set into motion?

REVIEW PROBLEMS

Al. A block moves horizontally with a velocity of $2 \mathrm{ft} / \mathrm{sec}$. Hts mass is 4 slugs. What is its momentum?

A2. An obfect of mass 2 kg mbers to the right with a velacity of $4 \mathrm{~m} / \mathrm{sec}$: another object of masg 4 kg moves to the left with a velocity of $2 \mathrm{~m} / \mathrm{sec}$. What is the roral momentum of the systen?

A3. The wonentum of a system is changing at the rate of $5 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$. What is the magnitude of the net external force exerted on the system?

A4. The total mass of a system ls 2 kg . The momentum of the system is changing at the rate of $6 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$. What is the magnitude of the system's center of mass acceleration?

A5. Two objects attract each other, but are not under the influence of any other forces. Which of the following statements is true?
A. the center of mass accelerates
B. the center of mass may rove at constant velocity
c. the center of mass must be stat fonary
D. a center of mass cannot be defined for interacting particles

A6. When a group of particles is subjected to external forces, the center of mass roves as though it were a particle subjected to the sum of all the external forces. The mass of this fictithous particle is
A. the everage mass of the group of particles
B. the mass of the heaviest parcicle in the group
C. the mass of the iightew particle in the group
D. the sum of the masses of the particles in the stoup

REVIEW PROBLEMS

Bl
A body with maso of 3 kg alides down a curved track which is one quadrant of a circle of radius 1 m, If the track is frictionless and the block starts from rest, what
 is the momentum of the block at the bottom of the crack.

Four parcicles, each of mase 3 kg , occupy the fout corners of a 4 m .4 m square as thown in the diagram. Each particle ia Enving with a mpeed of $10 \mathrm{~m} / \mathrm{sec}$ in the direction shown in the disgram,

(a) Locate che coordingtes of the center of mas of the four-particle sytten in the coordinate systam shown in the diagram.
(b) Calculate the velocity of the center of mass of this gyaten.

$$
F=\frac{1}{2} k t^{2} n t \quad\left(k=8 n t / \sec ^{2}\right)
$$

is exerted on 2-kis patticle which ia initially moping at a epeed of $10 \mathrm{~m} / \mathrm{sec}$. Yind the momentur of the particle at the end of 3 geconds.

B4 A nucleus, orfainally at rest, decaya radionctively by eniteing an electron of mantum 9.22×10^{-16} gmocn/sec, and at right angles to the direction of the electron a neutrino with momentum 5.33×10^{-16} gram $\mathrm{cm} / \mathrm{sec}$. Whar tis the kagnitude of the womentum of the residual nucleus?

CHAPTER 10

ANSWERS TO COMPETENCE CHECKS
$10 \mathrm{I} \quad 8.9 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
10-2 A
10-3 $\quad 150 \mathrm{~kg}-\mathrm{nd} / \sec ^{2}$
$10-4 \quad 1.99 \mathrm{~m} / \mathrm{sec}$

Chapter 10

ANSWERS TO REVIEW PROBLEMS

A1 $8 \mathrm{slug}-\mathrm{ft} / \mathrm{sec}$
A2 zero

A3 5 nt
A4 $3 \mathrm{~m} / \mathrm{sec}^{2}$

AS B
A6 D

B1 $\quad 3.3 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
B2 (a) $x_{\mathrm{cin}}=2 \mathrm{~m} ; y_{\mathrm{cos}} * 2 \mathrm{~m}$ (b) zero
B3 $56 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$.
B4 $\quad 1.06 \times 10^{-15} \mathrm{grrcm} / \mathrm{sec}$
frictionless systems, so that the motion or vibration can continue for an fafinite duration. Such morion is termad undamped. In any real case. however, friction is present, and so the motion decreases and eventualisy vanishes. Such motion is termed damped. This difference is illustrated in the figures below.

There are other quantifies associated with staple harmonic motion. The first is displacement, the actual displacement of the particle from the origin. Misplacement varien with time, and may be positive or negative. The second is the amplitude (A, which is the magnitude of the maximum displacement. Ampiftude always has a poeitive value. The quan tities in SHM are most easily visualized when displacement vexsus time is pigted, as shown in the following diagram.

The following problems are exercises in the definstions of amp1stude, displacement, frequency and period, and in the relation betweer frequency and period.

PROBLEM

The graph describes the motion of a particle in that it shaws the displacemenf x as a function of time. Fron the graph, what is the amplitude, frequency, and displacement at $t=15$ seconds?

solution

The graph shows a motim which is periodic; 1.e., one which repeats itself at regular intervals. In addition it can be described by a simpla trigonometric function-the stne function-mand thus the motion fs simple harmonic. The maximum excurstor from equilibrism is 3 cm, and thus the amplitude is 3 can. The motion repeats itsell every 20 seconds; the period, or periodic time, $\}$, is 20 seconds. The reciprocal of the period is the freguency v, and an this cane

$$
v * 1 / 2=1 / 20 \mathrm{sac}^{-1} \approx .05 \mathrm{kz}
$$

The displarement is found from the graph at is 15 seconds and equals -3 cm .

ENARLING EROBLEMS

1. The following graphs show the displacement of a paxtifte as a function of time. Which one is executiog periodic motioni

Solution

The correct answer is C,
The motion repeats itself at regular intervals and so is periodic
A - INCORRECT - Notice that the vibration $\ddagger \mathrm{s}$ decaying-no peak is as high as a previous one, and thus the motion never repeats itself. It therefore camnot be periodic in the strict sense of our definition. Such motion is often gualizied as dmped periodic mation.

月 - INCORRECH - The motion is a slow asymptotic decay to zero. le does not repeat and therefore cantot be pariodic.

D - INCORRECT - Notica the time intervals between the instances where the line crosses the x axis. They are constantly increasiag; and thus the motion does not have regularity. It canot be periodic.
2. The following graphs shou the metion of a particle as a function of time. Which one degefibes a partiele executang simple harmonic notion?

SOLUTION

B is a sine curve; sfnce SHM ia describable in terms of efther a single sine of cosine function, the motion is simple harionic.

A, C - INCORRECT - In order that the motion be simple harmonic motion, it should be expressible in terms of a single sine ar cosine term. This is obviously not the case, and so the motion cannot be simple haxmonic.

D - INCORRECT - This eurve is a decreasing or decaying or a danged sine curve. The motion never truly repeats, and so technically the motion is not periodic. It is teraed damed simple harmonic motion.

COMPETENCE CHECK - (50-1)

For the above graph showing stuple harmonic motion, what is the period? What are the frequency, amplifude, and diaplacement at $t=3$ seconds?

50-2 The Equation of Motion of a Simple Harmonic Osciliator

In Figure 1 a mass is attached to a light (massłess) elastic spring; that is, one that exerti a restoring force which is proportional to the displacement, Such a system executes simple harwonic motion, as is indicated in the diagran.

It is possible to describe this motion analytically by the use of Newton's second law of motion and by Hooke's law, which relates the deformation of the spring to the force of restorstion exerted by the spring.

The strategy is very straight foxward. Write Newton's second law for the mass, and realize that the force tem in the second law is suyplied by the spring. This equation is

$$
m \frac{d^{2} x}{d t z}=-k x
$$

or, upon rearranging,

$$
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0
$$

where

$$
\omega^{2}=\mathrm{k} / \mathrm{m}
$$

The quantity w is called the angular frequency of the motion for reasons whick will be made apparent in the problems.

One may wonder why the force due to gravity, -ng, is not included In the force term since we have considered a sping which is suspended vertically. The reason is that x is a displacenent of the mass from an equilibritu position which already includes the extension due to gravity, To see this, we may call the total displacement y and write the second 1a*:
$=\frac{d^{2} y}{d t^{2}}=-k y-m g$
If we make a simple substitution

$$
y \approx x-\operatorname{mg} / k
$$

the differential equation becomes
$\pi \frac{d^{2} x}{d t^{2}}=-k x$
Which is our original equation, The difference, therefore, between total displacement y and displacement from equilibriun x is a constant.

The problems which follow pertaln to the derivation and solution of the equation of motion for a simple harmonic oscillator.

PROBLEM

a

In the diagran, a weight of 2 newtons is artached to a spring, and the extension is observed to be 0.2 meters. Next the weight is replaced by $s 2 \mathrm{~kg}$ mass and the mass-spring combination is caused to vibrate, Find the angular frequency of the vibration and write the equation of motion for this system.

SOLUTION

The spring constant k is detarained by equating the force, $k x$, due to the spring's elongation to the weight;

$$
\begin{aligned}
& k(.2 \mathrm{n}) \pm 2 \mathrm{nt} \\
& \mathrm{k}=10 \mathrm{nt} / \mathrm{m}
\end{aligned}
$$

Now the angular frequency wis found for this spring with an at tached 2 kg taass,

$$
\omega * \sqrt{\mathrm{k} / \mathrm{m}}=\sqrt{5} \sec ^{-1}
$$

Newton's second \dot{j} aw, $F=$ ma, as applied to the oscillator is

$$
m \frac{d^{2} x}{d t^{2}}=-k x
$$

where x is the displacement from equilibtium; the restoring force is -kx, the minus sign inplying that the fotce supplied by the spring is always opposite to the displacement.

The statement of the law nay be written as

$$
\frac{d^{2} x}{d t^{2}}+w^{2} x=0
$$

where $w=\sqrt{k / 3}$. In the present case, thts is

$$
\frac{d^{2} x}{d t^{2}}+5 x=0
$$

ENABLING PROBLEM

1. In the oscillator shown, the spring has a spring constant k.

When x is the displacement of the spring, the restoring force as determined by Hooke's law is
A. $k x$

月. $k x^{2}$
C. $-k x$
D. $\quad 1 / 2 k x^{2}$

SOLUTION

The restoring force is directed opposite to the displacenent and is proportional to it. Thus the restoring force must be equal to the negative (inplyfing restoring) of a constant multiplied by displacement; i.e., $F=-k x$.

COMPETENCE CHECX - (50-2)

A waight is attached to the end of a vetttcally suspended spring, The extension caused by the weight is 1.22 meters. The same weight is then suspended by two sprinfor identical to the first, as shown in the diagram. Find the angular frequency of vibration for the double-sprith susten and write the equatiot of motion.

PROBLEM
A simple harmonic oscillator has a vibrating mass mand the apring constant k. Write a general solution to the equation of motion and show that angular frequency w and petiod T are related by

$$
\omega T=2 \pi
$$

SOLUTION
The equation of motion for the oscjllator is

$$
\frac{d^{2} x}{d t^{2}}+w^{2} x=0
$$

The equation is second order, homogeneous and with constant coefficients. The solution to rhe equation must have two arbitrary constants, and it ts known that the solution is

$$
x=A \sin \left(\omega^{\prime} T+\delta\right)
$$

where A and are arbitrary constants.

Yous may verify that this is indeed a solution by differentiating twice with respect to time, and substituting in the equation of motion.

The solution may be transfomed to another form by ustag the trigonometric identity

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

Let am wt and $\beta=\delta$, and so obtain

$$
\begin{equation*}
A \sin (\omega t+\delta)=A \sin \omega t \cos \delta+A \cos \omega t \sin \delta \tag{2}
\end{equation*}
$$

Now define constants B and C so that

$$
B=A \cos \delta
$$

and

$$
C=A \sin \delta
$$

Equation (2) then becomes

$$
A \sin (\omega t+\delta)=B \sin \omega t+C \sin \omega t
$$

Notice that the righthand side of this result is equal to x as shown by Equation (1):

$$
\begin{equation*}
x=B \sin \operatorname{tot} 1 \cdot E \cos \omega t \tag{3}
\end{equation*}
$$

Equations (1) and (3) are equivalent forms for the genaral solution of the hamonic oscillator equation. The motion is sinple harmonic because it can be described by a siagle sine function as seen in Equation (1). The relation between ω and T can be found from the fact that the value of the sine function $1 s$ unchanged by advancing the angle by 2π,

$$
\sin \theta=\sin (\theta+2 \pi)
$$

When time t advances by one period T, the value of x must be unchanged:

$$
x=\sin (\omega t+\delta)=\sin (\omega f t+T]+\delta)
$$

The argunent of the rightmost gine function is larger than the other argunent by wif. In order for both sine functions to be equal, on must. equal 2n:

$$
\omega T=2 \pi
$$

This important relation is formally identical to the defining equation fot angular frequency in rotational motion.

COMPETENCE CHECK - (50-3)
A simple harmonic oscillator has angular frequency Ω. Write the general solution to the equation of motion in two forms as a single sine function, and as the sum of sines and cosine functions. Find a relation between 5 and the period of the motion T.

PROBLEM

Two oscillators are constructed using equal masses mind identical aprings of constant k. Next, one of the springs is cut in half and so the value of k is altered. Call the oscillator with the long spring A and the one with the short spring B. How are their frequencies related?

SOLUTION
From WT = 2π, we obtain

$$
I=\frac{2 \pi}{4 \pi}
$$

therefore

$$
v=\frac{1}{T}-\frac{\omega}{2 \pi}
$$

But
-

$$
u \cdots \sqrt{\frac{k}{m}}
$$

so

$$
v_{A}=\frac{1}{2 \pi} \sqrt{\frac{k_{A}}{m}} \text { and } \quad v_{y}=\frac{1}{2 \pi} \sqrt{\frac{k_{g}}{m}}
$$

Now, when a spring 1: cut in half, the spring constant of each half is double that of the whole spring. (It takes twice as much force to cause unit extension.)

Using the relation $k_{B} * 2 k_{A}$, we obtain

$$
v_{B}=\sqrt{2} v_{A}
$$

ENABLING PROBLEMS

1. The graph shows the elongation of a spring versus the load placed on it. The spring constant k is

A. $\quad 10^{3} \mathrm{nt} / \mathrm{m}$
B. $\quad-10^{3} \mathrm{nt} / \mathrm{m}$
G. $10 \mathrm{nt} / \mathrm{m}$
D. $6.25 \times 10^{-2} n t-m^{2}$

SOLUTION

The apring constant k is the load per unft extension, or the proportionality between load and extension. Thus

$$
k=\frac{50 \mathrm{nt}}{5 \mathrm{~cm}}=\frac{50 \mathrm{nt}}{5 \times 10^{-2} \mathrm{~m}}=10^{3} \frac{\mathrm{nt}}{\mathrm{~m}}
$$

2. A $10-\mathrm{kg}$ mass is attached to a spring of spring constant $k=10^{3} \mathrm{nt} / \mathrm{m}$. What is the period of the oscillating systev?

CHAPTER 50

SOLUTTON
The pertod T is deternined by

$$
\begin{aligned}
& \omega T=2 \pi \\
& T=\frac{2 \pi}{\omega}=\frac{6.28}{\omega}
\end{aligned}
$$

How

$$
\begin{aligned}
& \omega^{2}=\frac{k}{m}=\sqrt{100} \\
& T=\frac{6.28}{10}=0.628 \mathrm{sec}
\end{aligned}
$$

3. A spring of constant k is cut in half. The spring constant of each half is
A. k
B. $\mathbf{2 k}$
C. $k / 2$
I. $4 k$

SOLUTION

Iargine the spring to be atretcbed by force so that the extension is 1 ti. This force is equal to k. Each half ls asretched with an extension of $1 / 2$ meter. A force of double this value is needed to stretch each half one meter. Therefore a half-spring has double the spring constant of a whole one.

COMPETENCE CHECR - 50-4
Two oscillators are constructed using equal tasses and tertial springs, each of spring constant k, Next, one of the springs is shortened by cutting it and discarding $3 / 4$ of its length. if the oscillator with the long spring is celled A, and the other in 8 , the frequencies are related by
A. $\quad V_{A}-2 V_{B}$
8. $2 v_{A}=v_{B}$
c, $v_{A}=4 v_{B}$
D. $4 v_{A} * v_{B}$

50-3 The Anglitude and the Phase Angie

The general solution to the fimple harmonic equation of motion is

$$
\begin{equation*}
x=A \sin (\omega t+b) \tag{1}
\end{equation*}
$$

In order for this expresofon to apply to a specific osciliator, numerical values wust be assigned to the parameters w, A, and f. We will see that angular frequency o has a definite value for a given oscillator, but the constants A and t are difterent for different initial comditions of the sane oscillator.

In the diagram, displacement x is: lotted on the ordinate dxis, and the tiae is plotid on the abscissa. The angulat frequency a is determined by the physical constants of the oschlator; in particulaf, should the oscillator compise a mass w and a spring with constant k, then D is uniquely fixed as $\omega=\sqrt{\mathrm{k} / \mathrm{m}}$
for that oscillater.
Amplitude A is defined the maximum displscenent of the oscil* iator, and is always a positive quantity. The amplitude is not fixed for a given oscillator, but is at the disposal of tin exparimenter who nay inpart a larga or small amplitude at wil. Amplitude is depicted in the diagram as the maximum height of the siat curve.

The constant $\$$ is variously termed the phase constant, phase angle. or simply phase. Like amplitude, phase $\$$ is another arbierary constant of integration (a second ordex differential equation muse have two) and merely describes the atate of the motion at the instant the experimenter started the time-clock (t $\infty 0$). 6 too is at the experimpater's dioposal. and it ton toes not affect the Frequency.

The problems below require a knowledge of the basic displacement equation (1) in order to recognize or calculate amplitude, phase, and frequency.

PKOBLEM

A simple harmonic oscillator is releaped from rest at a displacemen of 3 cm . The angular frequancy of the oscillator is $\pi / 4$ radians $/ \mathrm{sec}$. what is the displacetsent of the oscillator after 2 seconds?
solution
An expression for the displacement of a single harmonic oscillator 1s:

$$
\begin{equation*}
x=A \sin (w t+\delta) \tag{1}
\end{equation*}
$$

In order to find the amplitude A and phase angle f, we express the initial conditions (the condicions at $t=0$) fin equation form:

initial displacemant	$3=A \sin \delta$
initial velocity	$0=A \omega \cos \delta$

The last expression fot velocity is obtained by differentiating x with respect to time,

$$
v \equiv d x / d t=A \omega \cos (\omega t+\delta)
$$

and then sertiag time to zero.
Equations (2) and (3) can be solved for two untsowns, A and \&. From equation (2) we see A cannot be zero;

$$
0=\cos \delta
$$

This is satisfied by

$$
\begin{equation*}
\delta=\pi / 2 \tag{4}
\end{equation*}
$$

Putting this value into Eq. (1), we have

$$
3=A \sin \pi / 2
$$

or

$$
\begin{equation*}
3=A \tag{5}
\end{equation*}
$$

Puttitg the walues A, 6 , and a into Eq. (1) gives an expression for the displacement of the oscillator (in centimeters) at any time in its history,

$$
x=3 \sin (\pi / 4 t+\pi / 2)
$$

For the case at hand,

$$
t=2 \mathrm{sec}
$$

and we obtain
$*$ (at two seconds) $=3$ ginn

ENABLING PROBLEM

Find an expression for the velocity of a simple hamonic oscillator which is governed by the displacement relation

$$
x=A \sin (\omega t+\delta)
$$

SOLUTION
This is an exercise in differentiation. Recall the simple formuia

$$
\frac{d}{d t}(\sin \mu)=\cos \mu\left(\frac{d \mu}{d t}\right)
$$

In this case,

$$
\mu=\omega t+\delta
$$

and

$$
\frac{d y}{d t}=w
$$

Finally,
$v=d r / d t$
$=A \frac{d}{d t} \sin \mu$
$=A \cos \mu\left(\frac{d \mu}{d t}\right)$

- A $\omega \cos (\omega t+\delta)$

COMPETENCE CHECK - (50-5)
A simple harmonie oscillator has an angular Erequency of $\pi / 4$ radians/ sec. Initially, it is at the equilibrium position ($x * 0$) and moving with velocity $\pi \mathrm{ft} / \mathrm{sec}$. Find the position of this oscillator after two seconds have elapsed.

CHAPTER 50

REVIEW PROBEEMS

Al. Define periodic motion.
A2. Define frequency of oscillation.
A3. Define simple hamonic motion.
A4. Define amplitude of simple hamonic motion.
A5. The equilfbriun position of any oscillator fs
A. the maximum displacement
B. the point at which net force is zero
C. the position at which speed is least
D. always the ceatral point of the motion

A6. What kinc of Eorce causes a particle to execute simple harmondc motion?

REVIEN PROBLEMS

Bl A particle executing simple harmonic motion vibrates with a period of 1 sec and the maximura distance between any two points of the particle's path is 4 cm . Find the amplituse and angular frequency of the motion.

B2 A. 5 kg mass oscillates while suspended from a spring with a spring constant of $2 \mathrm{nt} / \mathrm{m}$. What is the angular frequency of oscillation?

B3 Write a general expression for the itsplacetent of a stuple harmonic oscillator and fdentify the symbols used.

B4 An Jscillator with period 2 sec is constructed from a I beter spring. What length of spring should be jiscarded to reduce the period to 1 sec ?

B5 Find the velocity at $t=3$ sec of a sfmple hamonic oscillator governed by the displacement expression (in meters)

$$
x=5 \sin (2 t+.28)
$$

CHAPTER 50

ANSWERS TO REVIEW PROBLEMS

A5 B

A6 A restoring force which is propottional to the displacement of the particle from the equilibrium position.

B1 $2 \mathrm{~cm}, 2 \mathrm{t}$ radians $/ \mathrm{sec}$
B2 2 radians/sec
B3 $x=A \sin (a t+\delta)$
x is displacement
A is anplitude
w is angular frequency
t is time elapsed
o is the phase constant
$84 \quad .75 \mathrm{~m}$
B5 $\quad 30 \mathrm{~m} / \mathrm{sec}$

CHAPTER 50

ANSWERS TS COMPETENGE CHECKS
$50-14 \mathrm{sec}, .25 \mathrm{~Hz}, 2 \mathrm{~cm},-2 \mathrm{~cm}$
50-2 4 radians $/ \mathrm{sec}, \mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}+16 \mathrm{x}=0$
$50-3 x=B \sin 2 t+C \cos 8 t, x=A \sin (3 t+8)$, where A, B, C, δ are arbitrary constants
$50-4 \quad 8$
50-5 it Et

[^0]: Reprinted in its entirety from Publishers Alert Service. No. $72-03$.

